Merge pull request #1208 from DioEgizio/fix-unused-libs
Removes `classparser` and `xz-embedded`
This commit is contained in:
commit
aecd158d3c
@ -305,7 +305,6 @@ add_subdirectory(libraries/systeminfo) # system information library
|
||||
add_subdirectory(libraries/hoedown) # markdown parser
|
||||
add_subdirectory(libraries/launcher) # java based launcher part for Minecraft
|
||||
add_subdirectory(libraries/javacheck) # java compatibility checker
|
||||
add_subdirectory(libraries/xz-embedded) # xz compression
|
||||
if (FORCE_BUNDLED_QUAZIP)
|
||||
message(STATUS "Using bundled QuaZip")
|
||||
set(BUILD_SHARED_LIBS 0) # link statically to avoid conflicts.
|
||||
@ -316,7 +315,6 @@ else()
|
||||
endif()
|
||||
add_subdirectory(libraries/rainbow) # Qt extension for colors
|
||||
add_subdirectory(libraries/LocalPeer) # fork of a library from Qt solutions
|
||||
add_subdirectory(libraries/classparser) # class parser library
|
||||
if(NOT tomlplusplus_FOUND)
|
||||
message(STATUS "Using bundled tomlplusplus")
|
||||
add_subdirectory(libraries/tomlplusplus) # toml parser
|
||||
|
@ -968,7 +968,6 @@ add_library(Launcher_logic STATIC ${LOGIC_SOURCES} ${LAUNCHER_SOURCES} ${LAUNCHE
|
||||
target_include_directories(Launcher_logic PUBLIC ${CMAKE_CURRENT_SOURCE_DIR})
|
||||
target_link_libraries(Launcher_logic
|
||||
systeminfo
|
||||
Launcher_classparser
|
||||
Launcher_murmur2
|
||||
nbt++
|
||||
${ZLIB_LIBRARIES}
|
||||
|
@ -2,14 +2,6 @@
|
||||
|
||||
This folder has third-party or otherwise external libraries needed for other parts to work.
|
||||
|
||||
## classparser
|
||||
|
||||
A simplistic parser for Java class files.
|
||||
|
||||
This library has served as a base for some (much more full-featured and advanced) work under NDA for AVG. It, however, should NOT be confused with that work.
|
||||
|
||||
Copyright belongs to Petr Mrázek, unless explicitly stated otherwise in the source files. Available under the Apache 2.0 license.
|
||||
|
||||
## filesystem
|
||||
|
||||
Gulrak's implementation of C++17 std::filesystem for C++11 /C++14/C++17/C++20 on Windows, macOS, Linux and FreeBSD.
|
||||
@ -191,10 +183,4 @@ A TOML language parser. Used by Forge 1.14+ to store mod metadata.
|
||||
|
||||
See [github repo](https://github.com/marzer/tomlplusplus).
|
||||
|
||||
Licenced under the MIT licence.
|
||||
|
||||
## xz-embedded
|
||||
|
||||
Tiny implementation of LZMA2 de/compression. This format was only used by Forge to save bandwidth.
|
||||
|
||||
Public domain.
|
||||
Licenced under the MIT licence.
|
@ -1,42 +0,0 @@
|
||||
project(classparser)
|
||||
|
||||
set(CMAKE_AUTOMOC ON)
|
||||
|
||||
######## Check endianness ########
|
||||
include(TestBigEndian)
|
||||
test_big_endian(BIGENDIAN)
|
||||
if(${BIGENDIAN})
|
||||
add_definitions(-DMULTIMC_BIG_ENDIAN)
|
||||
endif(${BIGENDIAN})
|
||||
|
||||
# Find Qt
|
||||
if(QT_VERSION_MAJOR EQUAL 5)
|
||||
find_package(Qt5 COMPONENTS Core REQUIRED)
|
||||
elseif(Launcher_QT_VERSION_MAJOR EQUAL 6)
|
||||
find_package(Qt6 COMPONENTS Core REQUIRED)
|
||||
endif()
|
||||
|
||||
set(CLASSPARSER_HEADERS
|
||||
# Public headers
|
||||
include/classparser_config.h
|
||||
include/classparser.h
|
||||
|
||||
# Private headers
|
||||
src/annotations.h
|
||||
src/classfile.h
|
||||
src/constants.h
|
||||
src/errors.h
|
||||
src/javaendian.h
|
||||
src/membuffer.h
|
||||
)
|
||||
|
||||
set(CLASSPARSER_SOURCES
|
||||
src/classparser.cpp
|
||||
src/annotations.cpp
|
||||
)
|
||||
|
||||
add_definitions(-DCLASSPARSER_LIBRARY)
|
||||
|
||||
add_library(Launcher_classparser STATIC ${CLASSPARSER_SOURCES} ${CLASSPARSER_HEADERS})
|
||||
target_include_directories(Launcher_classparser PUBLIC "${CMAKE_CURRENT_SOURCE_DIR}/include")
|
||||
target_link_libraries(Launcher_classparser QuaZip::QuaZip Qt${QT_VERSION_MAJOR}::Core)
|
@ -1,27 +0,0 @@
|
||||
/* Copyright 2013-2021 MultiMC Contributors
|
||||
*
|
||||
* Authors: Orochimarufan <orochimarufan.x3@gmail.com>
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
#pragma once
|
||||
#include <QString>
|
||||
#include "classparser_config.h"
|
||||
|
||||
namespace classparser
|
||||
{
|
||||
/**
|
||||
* @brief Get the version from a minecraft.jar by parsing its class files. Expensive!
|
||||
*/
|
||||
QString GetMinecraftJarVersion(QString jar);
|
||||
}
|
@ -1,22 +0,0 @@
|
||||
/* Copyright 2013-2021 MultiMC Contributors
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include <QtCore/QtGlobal>
|
||||
|
||||
#ifdef CLASSPARSER_LIBRARY
|
||||
#define CLASSPARSER_EXPORT Q_DECL_EXPORT
|
||||
#else
|
||||
#define CLASSPARSER_EXPORT Q_DECL_IMPORT
|
||||
#endif
|
@ -1,85 +0,0 @@
|
||||
#include "classfile.h"
|
||||
#include "annotations.h"
|
||||
#include <sstream>
|
||||
|
||||
namespace java
|
||||
{
|
||||
std::string annotation::toString()
|
||||
{
|
||||
std::ostringstream ss;
|
||||
ss << "Annotation type : " << type_index << " - " << pool[type_index].str_data << std::endl;
|
||||
ss << "Contains " << name_val_pairs.size() << " pairs:" << std::endl;
|
||||
for (unsigned i = 0; i < name_val_pairs.size(); i++)
|
||||
{
|
||||
std::pair<uint16_t, element_value *> &val = name_val_pairs[i];
|
||||
auto name_idx = val.first;
|
||||
ss << pool[name_idx].str_data << "(" << name_idx << ")"
|
||||
<< " = " << val.second->toString() << std::endl;
|
||||
}
|
||||
return ss.str();
|
||||
}
|
||||
|
||||
annotation *annotation::read(util::membuffer &input, constant_pool &pool)
|
||||
{
|
||||
uint16_t type_index = 0;
|
||||
input.read_be(type_index);
|
||||
annotation *ann = new annotation(type_index, pool);
|
||||
|
||||
uint16_t num_pairs = 0;
|
||||
input.read_be(num_pairs);
|
||||
while (num_pairs)
|
||||
{
|
||||
uint16_t name_idx = 0;
|
||||
// read name index
|
||||
input.read_be(name_idx);
|
||||
auto elem = element_value::readElementValue(input, pool);
|
||||
// read value
|
||||
ann->add_pair(name_idx, elem);
|
||||
num_pairs--;
|
||||
}
|
||||
return ann;
|
||||
}
|
||||
|
||||
element_value *element_value::readElementValue(util::membuffer &input,
|
||||
java::constant_pool &pool)
|
||||
{
|
||||
element_value_type type = INVALID;
|
||||
input.read(type);
|
||||
uint16_t index = 0;
|
||||
uint16_t index2 = 0;
|
||||
std::vector<element_value *> vals;
|
||||
switch (type)
|
||||
{
|
||||
case PRIMITIVE_BYTE:
|
||||
case PRIMITIVE_CHAR:
|
||||
case PRIMITIVE_DOUBLE:
|
||||
case PRIMITIVE_FLOAT:
|
||||
case PRIMITIVE_INT:
|
||||
case PRIMITIVE_LONG:
|
||||
case PRIMITIVE_SHORT:
|
||||
case PRIMITIVE_BOOLEAN:
|
||||
case STRING:
|
||||
input.read_be(index);
|
||||
return new element_value_simple(type, index, pool);
|
||||
case ENUM_CONSTANT:
|
||||
input.read_be(index);
|
||||
input.read_be(index2);
|
||||
return new element_value_enum(type, index, index2, pool);
|
||||
case CLASS: // Class
|
||||
input.read_be(index);
|
||||
return new element_value_class(type, index, pool);
|
||||
case ANNOTATION: // Annotation
|
||||
// FIXME: runtime visibility info needs to be passed from parent
|
||||
return new element_value_annotation(ANNOTATION, annotation::read(input, pool), pool);
|
||||
case ARRAY: // Array
|
||||
input.read_be(index);
|
||||
for (int i = 0; i < index; i++)
|
||||
{
|
||||
vals.push_back(element_value::readElementValue(input, pool));
|
||||
}
|
||||
return new element_value_array(ARRAY, vals, pool);
|
||||
default:
|
||||
throw java::classfile_exception();
|
||||
}
|
||||
}
|
||||
}
|
@ -1,278 +0,0 @@
|
||||
#pragma once
|
||||
#include "classfile.h"
|
||||
#include <map>
|
||||
#include <vector>
|
||||
|
||||
namespace java
|
||||
{
|
||||
enum element_value_type : uint8_t
|
||||
{
|
||||
INVALID = 0,
|
||||
STRING = 's',
|
||||
ENUM_CONSTANT = 'e',
|
||||
CLASS = 'c',
|
||||
ANNOTATION = '@',
|
||||
ARRAY = '[', // one array dimension
|
||||
PRIMITIVE_INT = 'I', // integer
|
||||
PRIMITIVE_BYTE = 'B', // signed byte
|
||||
PRIMITIVE_CHAR = 'C', // Unicode character code point in the Basic Multilingual Plane,
|
||||
// encoded with UTF-16
|
||||
PRIMITIVE_DOUBLE = 'D', // double-precision floating-point value
|
||||
PRIMITIVE_FLOAT = 'F', // single-precision floating-point value
|
||||
PRIMITIVE_LONG = 'J', // long integer
|
||||
PRIMITIVE_SHORT = 'S', // signed short
|
||||
PRIMITIVE_BOOLEAN = 'Z' // true or false
|
||||
};
|
||||
/**
|
||||
* The element_value structure is a discriminated union representing the value of an
|
||||
*element-value pair.
|
||||
* It is used to represent element values in all attributes that describe annotations
|
||||
* - RuntimeVisibleAnnotations
|
||||
* - RuntimeInvisibleAnnotations
|
||||
* - RuntimeVisibleParameterAnnotations
|
||||
* - RuntimeInvisibleParameterAnnotations).
|
||||
*
|
||||
* The element_value structure has the following format:
|
||||
*/
|
||||
class element_value
|
||||
{
|
||||
protected:
|
||||
element_value_type type;
|
||||
constant_pool &pool;
|
||||
|
||||
public:
|
||||
element_value(element_value_type type, constant_pool &pool) : type(type), pool(pool) {};
|
||||
virtual ~element_value() {}
|
||||
|
||||
element_value_type getElementValueType()
|
||||
{
|
||||
return type;
|
||||
}
|
||||
|
||||
virtual std::string toString() = 0;
|
||||
|
||||
static element_value *readElementValue(util::membuffer &input, constant_pool &pool);
|
||||
};
|
||||
|
||||
/**
|
||||
* Each value of the annotations table represents a single runtime-visible annotation on a
|
||||
* program element.
|
||||
* The annotation structure has the following format:
|
||||
*/
|
||||
class annotation
|
||||
{
|
||||
public:
|
||||
typedef std::vector<std::pair<uint16_t, element_value *>> value_list;
|
||||
|
||||
protected:
|
||||
/**
|
||||
* The value of the type_index item must be a valid index into the constant_pool table.
|
||||
* The constant_pool entry at that index must be a CONSTANT_Utf8_info (§4.4.7) structure
|
||||
* representing a field descriptor representing the annotation type corresponding
|
||||
* to the annotation represented by this annotation structure.
|
||||
*/
|
||||
uint16_t type_index;
|
||||
/**
|
||||
* map between element_name_index and value.
|
||||
*
|
||||
* The value of the element_name_index item must be a valid index into the constant_pool
|
||||
*table.
|
||||
* The constant_pool entry at that index must be a CONSTANT_Utf8_info (§4.4.7) structure
|
||||
*representing
|
||||
* a valid field descriptor (§4.3.2) that denotes the name of the annotation type element
|
||||
*represented
|
||||
* by this element_value_pairs entry.
|
||||
*/
|
||||
value_list name_val_pairs;
|
||||
/**
|
||||
* Reference to the parent constant pool
|
||||
*/
|
||||
constant_pool &pool;
|
||||
|
||||
public:
|
||||
annotation(uint16_t type_index, constant_pool &pool)
|
||||
: type_index(type_index), pool(pool) {};
|
||||
~annotation()
|
||||
{
|
||||
for (unsigned i = 0; i < name_val_pairs.size(); i++)
|
||||
{
|
||||
delete name_val_pairs[i].second;
|
||||
}
|
||||
}
|
||||
void add_pair(uint16_t key, element_value *value)
|
||||
{
|
||||
name_val_pairs.push_back(std::make_pair(key, value));
|
||||
}
|
||||
;
|
||||
value_list::const_iterator begin()
|
||||
{
|
||||
return name_val_pairs.cbegin();
|
||||
}
|
||||
value_list::const_iterator end()
|
||||
{
|
||||
return name_val_pairs.cend();
|
||||
}
|
||||
std::string toString();
|
||||
static annotation *read(util::membuffer &input, constant_pool &pool);
|
||||
};
|
||||
typedef std::vector<annotation *> annotation_table;
|
||||
|
||||
/// type for simple value annotation elements
|
||||
class element_value_simple : public element_value
|
||||
{
|
||||
protected:
|
||||
/// index of the constant in the constant pool
|
||||
uint16_t index;
|
||||
|
||||
public:
|
||||
element_value_simple(element_value_type type, uint16_t index, constant_pool &pool)
|
||||
: element_value(type, pool), index(index) {
|
||||
// TODO: verify consistency
|
||||
};
|
||||
uint16_t getIndex()
|
||||
{
|
||||
return index;
|
||||
}
|
||||
virtual std::string toString()
|
||||
{
|
||||
return pool[index].toString();
|
||||
}
|
||||
;
|
||||
};
|
||||
/// The enum_const_value item is used if the tag item is 'e'.
|
||||
class element_value_enum : public element_value
|
||||
{
|
||||
protected:
|
||||
/**
|
||||
* The value of the type_name_index item must be a valid index into the constant_pool table.
|
||||
* The constant_pool entry at that index must be a CONSTANT_Utf8_info (§4.4.7) structure
|
||||
* representing a valid field descriptor (§4.3.2) that denotes the internal form of the
|
||||
* binary
|
||||
* name (§4.2.1) of the type of the enum constant represented by this element_value
|
||||
* structure.
|
||||
*/
|
||||
uint16_t typeIndex;
|
||||
/**
|
||||
* The value of the const_name_index item must be a valid index into the constant_pool
|
||||
* table.
|
||||
* The constant_pool entry at that index must be a CONSTANT_Utf8_info (§4.4.7) structure
|
||||
* representing the simple name of the enum constant represented by this element_value
|
||||
* structure.
|
||||
*/
|
||||
uint16_t valueIndex;
|
||||
|
||||
public:
|
||||
element_value_enum(element_value_type type, uint16_t typeIndex, uint16_t valueIndex,
|
||||
constant_pool &pool)
|
||||
: element_value(type, pool), typeIndex(typeIndex), valueIndex(valueIndex)
|
||||
{
|
||||
// TODO: verify consistency
|
||||
}
|
||||
uint16_t getValueIndex()
|
||||
{
|
||||
return valueIndex;
|
||||
}
|
||||
uint16_t getTypeIndex()
|
||||
{
|
||||
return typeIndex;
|
||||
}
|
||||
virtual std::string toString()
|
||||
{
|
||||
return "enum value";
|
||||
}
|
||||
;
|
||||
};
|
||||
|
||||
class element_value_class : public element_value
|
||||
{
|
||||
protected:
|
||||
/**
|
||||
* The class_info_index item must be a valid index into the constant_pool table.
|
||||
* The constant_pool entry at that index must be a CONSTANT_Utf8_info (§4.4.7) structure
|
||||
* representing the return descriptor (§4.3.3) of the type that is reified by the class
|
||||
* represented by this element_value structure.
|
||||
*
|
||||
* For example, 'V' for Void.class, 'Ljava/lang/Object;' for Object, etc.
|
||||
*
|
||||
* Or in plain english, you can store type information in annotations. Yay.
|
||||
*/
|
||||
uint16_t classIndex;
|
||||
|
||||
public:
|
||||
element_value_class(element_value_type type, uint16_t classIndex, constant_pool &pool)
|
||||
: element_value(type, pool), classIndex(classIndex)
|
||||
{
|
||||
// TODO: verify consistency
|
||||
}
|
||||
uint16_t getIndex()
|
||||
{
|
||||
return classIndex;
|
||||
}
|
||||
virtual std::string toString()
|
||||
{
|
||||
return "class";
|
||||
}
|
||||
;
|
||||
};
|
||||
|
||||
/// nested annotations... yay
|
||||
class element_value_annotation : public element_value
|
||||
{
|
||||
private:
|
||||
annotation *nestedAnnotation;
|
||||
|
||||
public:
|
||||
element_value_annotation(element_value_type type, annotation *nestedAnnotation,
|
||||
constant_pool &pool)
|
||||
: element_value(type, pool), nestedAnnotation(nestedAnnotation) {};
|
||||
~element_value_annotation()
|
||||
{
|
||||
if (nestedAnnotation)
|
||||
{
|
||||
delete nestedAnnotation;
|
||||
nestedAnnotation = nullptr;
|
||||
}
|
||||
}
|
||||
virtual std::string toString()
|
||||
{
|
||||
return "nested annotation";
|
||||
}
|
||||
;
|
||||
};
|
||||
|
||||
/// and arrays!
|
||||
class element_value_array : public element_value
|
||||
{
|
||||
public:
|
||||
typedef std::vector<element_value *> elem_vec;
|
||||
|
||||
protected:
|
||||
elem_vec values;
|
||||
|
||||
public:
|
||||
element_value_array(element_value_type type, std::vector<element_value *> &values,
|
||||
constant_pool &pool)
|
||||
: element_value(type, pool), values(values) {};
|
||||
~element_value_array()
|
||||
{
|
||||
for (unsigned i = 0; i < values.size(); i++)
|
||||
{
|
||||
delete values[i];
|
||||
}
|
||||
}
|
||||
;
|
||||
elem_vec::const_iterator begin()
|
||||
{
|
||||
return values.cbegin();
|
||||
}
|
||||
elem_vec::const_iterator end()
|
||||
{
|
||||
return values.cend();
|
||||
}
|
||||
virtual std::string toString()
|
||||
{
|
||||
return "array";
|
||||
}
|
||||
;
|
||||
};
|
||||
}
|
@ -1,156 +0,0 @@
|
||||
#pragma once
|
||||
#include "membuffer.h"
|
||||
#include "constants.h"
|
||||
#include "annotations.h"
|
||||
#include <map>
|
||||
namespace java
|
||||
{
|
||||
/**
|
||||
* Class representing a Java .class file
|
||||
*/
|
||||
class classfile : public util::membuffer
|
||||
{
|
||||
public:
|
||||
classfile(char *data, std::size_t size) : membuffer(data, size)
|
||||
{
|
||||
valid = false;
|
||||
is_synthetic = false;
|
||||
read_be(magic);
|
||||
if (magic != 0xCAFEBABE)
|
||||
throw classfile_exception();
|
||||
read_be(minor_version);
|
||||
read_be(major_version);
|
||||
constants.load(*this);
|
||||
read_be(access_flags);
|
||||
read_be(this_class);
|
||||
read_be(super_class);
|
||||
|
||||
// Interfaces
|
||||
uint16_t iface_count = 0;
|
||||
read_be(iface_count);
|
||||
while (iface_count)
|
||||
{
|
||||
uint16_t iface;
|
||||
read_be(iface);
|
||||
interfaces.push_back(iface);
|
||||
iface_count--;
|
||||
}
|
||||
|
||||
// Fields
|
||||
// read fields (and attributes from inside fields) (and possible inner classes. yay for
|
||||
// recursion!)
|
||||
// for now though, we will ignore all attributes
|
||||
/*
|
||||
* field_info
|
||||
* {
|
||||
* u2 access_flags;
|
||||
* u2 name_index;
|
||||
* u2 descriptor_index;
|
||||
* u2 attributes_count;
|
||||
* attribute_info attributes[attributes_count];
|
||||
* }
|
||||
*/
|
||||
uint16_t field_count = 0;
|
||||
read_be(field_count);
|
||||
while (field_count)
|
||||
{
|
||||
// skip field stuff
|
||||
skip(6);
|
||||
// and skip field attributes
|
||||
uint16_t attr_count = 0;
|
||||
read_be(attr_count);
|
||||
while (attr_count)
|
||||
{
|
||||
skip(2);
|
||||
uint32_t attr_length = 0;
|
||||
read_be(attr_length);
|
||||
skip(attr_length);
|
||||
attr_count--;
|
||||
}
|
||||
field_count--;
|
||||
}
|
||||
|
||||
// class methods
|
||||
/*
|
||||
* method_info
|
||||
* {
|
||||
* u2 access_flags;
|
||||
* u2 name_index;
|
||||
* u2 descriptor_index;
|
||||
* u2 attributes_count;
|
||||
* attribute_info attributes[attributes_count];
|
||||
* }
|
||||
*/
|
||||
uint16_t method_count = 0;
|
||||
read_be(method_count);
|
||||
while (method_count)
|
||||
{
|
||||
skip(6);
|
||||
// and skip method attributes
|
||||
uint16_t attr_count = 0;
|
||||
read_be(attr_count);
|
||||
while (attr_count)
|
||||
{
|
||||
skip(2);
|
||||
uint32_t attr_length = 0;
|
||||
read_be(attr_length);
|
||||
skip(attr_length);
|
||||
attr_count--;
|
||||
}
|
||||
method_count--;
|
||||
}
|
||||
|
||||
// class attributes
|
||||
// there are many kinds of attributes. this is just the generic wrapper structure.
|
||||
// type is decided by attribute name. extensions to the standard are *possible*
|
||||
// class annotations are one kind of a attribute (one per class)
|
||||
/*
|
||||
* attribute_info
|
||||
* {
|
||||
* u2 attribute_name_index;
|
||||
* u4 attribute_length;
|
||||
* u1 info[attribute_length];
|
||||
* }
|
||||
*/
|
||||
uint16_t class_attr_count = 0;
|
||||
read_be(class_attr_count);
|
||||
while (class_attr_count)
|
||||
{
|
||||
uint16_t name_idx = 0;
|
||||
read_be(name_idx);
|
||||
uint32_t attr_length = 0;
|
||||
read_be(attr_length);
|
||||
|
||||
auto name = constants[name_idx];
|
||||
if (name.str_data == "RuntimeVisibleAnnotations")
|
||||
{
|
||||
uint16_t num_annotations = 0;
|
||||
read_be(num_annotations);
|
||||
while (num_annotations)
|
||||
{
|
||||
visible_class_annotations.push_back(annotation::read(*this, constants));
|
||||
num_annotations--;
|
||||
}
|
||||
}
|
||||
else
|
||||
skip(attr_length);
|
||||
class_attr_count--;
|
||||
}
|
||||
valid = true;
|
||||
}
|
||||
;
|
||||
bool valid;
|
||||
bool is_synthetic;
|
||||
uint32_t magic;
|
||||
uint16_t minor_version;
|
||||
uint16_t major_version;
|
||||
constant_pool constants;
|
||||
uint16_t access_flags;
|
||||
uint16_t this_class;
|
||||
uint16_t super_class;
|
||||
// interfaces this class implements ? must be. investigate.
|
||||
std::vector<uint16_t> interfaces;
|
||||
// FIXME: doesn't free up memory on delete
|
||||
java::annotation_table visible_class_annotations;
|
||||
};
|
||||
}
|
@ -1,83 +0,0 @@
|
||||
/* Copyright 2013-2021 MultiMC Contributors
|
||||
*
|
||||
* Authors: Orochimarufan <orochimarufan.x3@gmail.com>
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
#include "classfile.h"
|
||||
#include "classparser.h"
|
||||
|
||||
#include <QFile>
|
||||
#include <quazip/quazipfile.h>
|
||||
#include <QDebug>
|
||||
|
||||
namespace classparser
|
||||
{
|
||||
|
||||
QString GetMinecraftJarVersion(QString jarName)
|
||||
{
|
||||
QString version;
|
||||
|
||||
// check if minecraft.jar exists
|
||||
QFile jar(jarName);
|
||||
if (!jar.exists())
|
||||
return version;
|
||||
|
||||
// open minecraft.jar
|
||||
QuaZip zip(&jar);
|
||||
if (!zip.open(QuaZip::mdUnzip))
|
||||
return version;
|
||||
|
||||
// open Minecraft.class
|
||||
zip.setCurrentFile("net/minecraft/client/Minecraft.class", QuaZip::csSensitive);
|
||||
QuaZipFile Minecraft(&zip);
|
||||
if (!Minecraft.open(QuaZipFile::ReadOnly))
|
||||
return version;
|
||||
|
||||
// read Minecraft.class
|
||||
qint64 size = Minecraft.size();
|
||||
char *classfile = new char[size];
|
||||
Minecraft.read(classfile, size);
|
||||
|
||||
// parse Minecraft.class
|
||||
try
|
||||
{
|
||||
char *temp = classfile;
|
||||
java::classfile MinecraftClass(temp, size);
|
||||
java::constant_pool constants = MinecraftClass.constants;
|
||||
for (java::constant_pool::container_type::const_iterator iter = constants.begin();
|
||||
iter != constants.end(); iter++)
|
||||
{
|
||||
const java::constant &constant = *iter;
|
||||
if (constant.type != java::constant_type_t::j_string_data)
|
||||
continue;
|
||||
const std::string &str = constant.str_data;
|
||||
qDebug() << QString::fromStdString(str);
|
||||
if (str.compare(0, 20, "Minecraft Minecraft ") == 0)
|
||||
{
|
||||
version = str.substr(20).data();
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
catch (const java::classfile_exception &) { }
|
||||
|
||||
// clean up
|
||||
delete[] classfile;
|
||||
Minecraft.close();
|
||||
zip.close();
|
||||
jar.close();
|
||||
|
||||
return version;
|
||||
}
|
||||
}
|
@ -1,232 +0,0 @@
|
||||
#pragma once
|
||||
#include "errors.h"
|
||||
#include "membuffer.h"
|
||||
#include <sstream>
|
||||
|
||||
namespace java
|
||||
{
|
||||
enum class constant_type_t : uint8_t
|
||||
{
|
||||
j_hole = 0, // HACK: this is a hole in the array, because java is crazy
|
||||
j_string_data = 1,
|
||||
j_int = 3,
|
||||
j_float = 4,
|
||||
j_long = 5,
|
||||
j_double = 6,
|
||||
j_class = 7,
|
||||
j_string = 8,
|
||||
j_fieldref = 9,
|
||||
j_methodref = 10,
|
||||
j_interface_methodref = 11,
|
||||
j_nameandtype = 12
|
||||
// FIXME: missing some constant types, see https://docs.oracle.com/javase/specs/jvms/se7/html/jvms-4.html#jvms-4.4
|
||||
};
|
||||
|
||||
struct ref_type_t
|
||||
{
|
||||
/**
|
||||
* Class reference:
|
||||
* an index within the constant pool to a UTF-8 string containing
|
||||
* the fully qualified class name (in internal format)
|
||||
* Used for j_class, j_fieldref, j_methodref and j_interface_methodref
|
||||
*/
|
||||
uint16_t class_idx;
|
||||
// used for j_fieldref, j_methodref and j_interface_methodref
|
||||
uint16_t name_and_type_idx;
|
||||
};
|
||||
|
||||
struct name_and_type_t
|
||||
{
|
||||
uint16_t name_index;
|
||||
uint16_t descriptor_index;
|
||||
};
|
||||
|
||||
class constant
|
||||
{
|
||||
public:
|
||||
constant_type_t type = constant_type_t::j_hole;
|
||||
|
||||
constant(util::membuffer &buf)
|
||||
{
|
||||
buf.read(type);
|
||||
|
||||
// load data depending on type
|
||||
switch (type)
|
||||
{
|
||||
case constant_type_t::j_float:
|
||||
buf.read_be(data.int_data);
|
||||
break;
|
||||
case constant_type_t::j_int:
|
||||
buf.read_be(data.int_data); // same as float data really
|
||||
break;
|
||||
case constant_type_t::j_double:
|
||||
buf.read_be(data.long_data);
|
||||
break;
|
||||
case constant_type_t::j_long:
|
||||
buf.read_be(data.long_data); // same as double
|
||||
break;
|
||||
case constant_type_t::j_class:
|
||||
buf.read_be(data.ref_type.class_idx);
|
||||
break;
|
||||
case constant_type_t::j_fieldref:
|
||||
case constant_type_t::j_methodref:
|
||||
case constant_type_t::j_interface_methodref:
|
||||
buf.read_be(data.ref_type.class_idx);
|
||||
buf.read_be(data.ref_type.name_and_type_idx);
|
||||
break;
|
||||
case constant_type_t::j_string:
|
||||
buf.read_be(data.index);
|
||||
break;
|
||||
case constant_type_t::j_string_data:
|
||||
// HACK HACK: for now, we call these UTF-8 and do no further processing.
|
||||
// Later, we should do some decoding. It's really modified UTF-8
|
||||
// * U+0000 is represented as 0xC0,0x80 invalid character
|
||||
// * any single zero byte ends the string
|
||||
// * characters above U+10000 are encoded like in CESU-8
|
||||
buf.read_jstr(str_data);
|
||||
break;
|
||||
case constant_type_t::j_nameandtype:
|
||||
buf.read_be(data.name_and_type.name_index);
|
||||
buf.read_be(data.name_and_type.descriptor_index);
|
||||
break;
|
||||
default:
|
||||
// invalid constant type!
|
||||
throw classfile_exception();
|
||||
}
|
||||
}
|
||||
constant(int)
|
||||
{
|
||||
}
|
||||
|
||||
std::string toString()
|
||||
{
|
||||
std::ostringstream ss;
|
||||
switch (type)
|
||||
{
|
||||
case constant_type_t::j_hole:
|
||||
ss << "Fake legacy entry";
|
||||
break;
|
||||
case constant_type_t::j_float:
|
||||
ss << "Float: " << data.float_data;
|
||||
break;
|
||||
case constant_type_t::j_double:
|
||||
ss << "Double: " << data.double_data;
|
||||
break;
|
||||
case constant_type_t::j_int:
|
||||
ss << "Int: " << data.int_data;
|
||||
break;
|
||||
case constant_type_t::j_long:
|
||||
ss << "Long: " << data.long_data;
|
||||
break;
|
||||
case constant_type_t::j_string_data:
|
||||
ss << "StrData: " << str_data;
|
||||
break;
|
||||
case constant_type_t::j_string:
|
||||
ss << "Str: " << data.index;
|
||||
break;
|
||||
case constant_type_t::j_fieldref:
|
||||
ss << "FieldRef: " << data.ref_type.class_idx << " " << data.ref_type.name_and_type_idx;
|
||||
break;
|
||||
case constant_type_t::j_methodref:
|
||||
ss << "MethodRef: " << data.ref_type.class_idx << " " << data.ref_type.name_and_type_idx;
|
||||
break;
|
||||
case constant_type_t::j_interface_methodref:
|
||||
ss << "IfMethodRef: " << data.ref_type.class_idx << " " << data.ref_type.name_and_type_idx;
|
||||
break;
|
||||
case constant_type_t::j_class:
|
||||
ss << "Class: " << data.ref_type.class_idx;
|
||||
break;
|
||||
case constant_type_t::j_nameandtype:
|
||||
ss << "NameAndType: " << data.name_and_type.name_index << " "
|
||||
<< data.name_and_type.descriptor_index;
|
||||
break;
|
||||
default:
|
||||
ss << "Invalid entry (" << int(type) << ")";
|
||||
break;
|
||||
}
|
||||
return ss.str();
|
||||
}
|
||||
|
||||
std::string str_data; /** String data in 'modified utf-8'.*/
|
||||
|
||||
// store everything here.
|
||||
union
|
||||
{
|
||||
int32_t int_data;
|
||||
int64_t long_data;
|
||||
float float_data;
|
||||
double double_data;
|
||||
uint16_t index;
|
||||
ref_type_t ref_type;
|
||||
name_and_type_t name_and_type;
|
||||
} data = {0};
|
||||
};
|
||||
|
||||
/**
|
||||
* A helper class that represents the custom container used in Java class file for storage of
|
||||
* constants
|
||||
*/
|
||||
class constant_pool
|
||||
{
|
||||
public:
|
||||
/**
|
||||
* Create a pool of constants
|
||||
*/
|
||||
constant_pool()
|
||||
{
|
||||
}
|
||||
/**
|
||||
* Load a java constant pool
|
||||
*/
|
||||
void load(util::membuffer &buf)
|
||||
{
|
||||
// FIXME: @SANITY this should check for the end of buffer.
|
||||
uint16_t length = 0;
|
||||
buf.read_be(length);
|
||||
length--;
|
||||
const constant *last_constant = nullptr;
|
||||
while (length)
|
||||
{
|
||||
const constant &cnst = constant(buf);
|
||||
constants.push_back(cnst);
|
||||
last_constant = &constants[constants.size() - 1];
|
||||
if (last_constant->type == constant_type_t::j_double ||
|
||||
last_constant->type == constant_type_t::j_long)
|
||||
{
|
||||
// push in a fake constant to preserve indexing
|
||||
constants.push_back(constant(0));
|
||||
length -= 2;
|
||||
}
|
||||
else
|
||||
{
|
||||
length--;
|
||||
}
|
||||
}
|
||||
}
|
||||
typedef std::vector<java::constant> container_type;
|
||||
/**
|
||||
* Access constants based on jar file index numbers (index of the first element is 1)
|
||||
*/
|
||||
java::constant &operator[](std::size_t constant_index)
|
||||
{
|
||||
if (constant_index == 0 || constant_index > constants.size())
|
||||
{
|
||||
throw classfile_exception();
|
||||
}
|
||||
return constants[constant_index - 1];
|
||||
}
|
||||
;
|
||||
container_type::const_iterator begin() const
|
||||
{
|
||||
return constants.begin();
|
||||
}
|
||||
;
|
||||
container_type::const_iterator end() const
|
||||
{
|
||||
return constants.end();
|
||||
}
|
||||
|
||||
private:
|
||||
container_type constants;
|
||||
};
|
||||
}
|
@ -1,8 +0,0 @@
|
||||
#pragma once
|
||||
#include <exception>
|
||||
namespace java
|
||||
{
|
||||
class classfile_exception : public std::exception
|
||||
{
|
||||
};
|
||||
}
|
@ -1,59 +0,0 @@
|
||||
#pragma once
|
||||
#include <stdint.h>
|
||||
|
||||
/**
|
||||
* Swap bytes between big endian and local number representation
|
||||
*/
|
||||
namespace util
|
||||
{
|
||||
#ifdef MULTIMC_BIG_ENDIAN
|
||||
inline uint64_t bigswap(uint64_t x)
|
||||
{
|
||||
return x;
|
||||
}
|
||||
|
||||
inline uint32_t bigswap(uint32_t x)
|
||||
{
|
||||
return x;
|
||||
}
|
||||
|
||||
inline uint16_t bigswap(uint16_t x)
|
||||
{
|
||||
return x;
|
||||
}
|
||||
|
||||
#else
|
||||
inline uint64_t bigswap(uint64_t x)
|
||||
{
|
||||
return (x >> 56) | ((x << 40) & 0x00FF000000000000) | ((x << 24) & 0x0000FF0000000000) |
|
||||
((x << 8) & 0x000000FF00000000) | ((x >> 8) & 0x00000000FF000000) |
|
||||
((x >> 24) & 0x0000000000FF0000) | ((x >> 40) & 0x000000000000FF00) | (x << 56);
|
||||
}
|
||||
|
||||
inline uint32_t bigswap(uint32_t x)
|
||||
{
|
||||
return (x >> 24) | ((x << 8) & 0x00FF0000) | ((x >> 8) & 0x0000FF00) | (x << 24);
|
||||
}
|
||||
|
||||
inline uint16_t bigswap(uint16_t x)
|
||||
{
|
||||
return (x >> 8) | (x << 8);
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
inline int64_t bigswap(int64_t x)
|
||||
{
|
||||
return static_cast<int64_t>(bigswap(static_cast<uint64_t>(x)));
|
||||
}
|
||||
|
||||
inline int32_t bigswap(int32_t x)
|
||||
{
|
||||
return static_cast<int32_t>(bigswap(static_cast<uint32_t>(x)));
|
||||
}
|
||||
|
||||
inline int16_t bigswap(int16_t x)
|
||||
{
|
||||
return static_cast<int16_t>(bigswap(static_cast<uint16_t>(x)));
|
||||
}
|
||||
}
|
@ -1,63 +0,0 @@
|
||||
#pragma once
|
||||
#include <stdint.h>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
#include <exception>
|
||||
#include "javaendian.h"
|
||||
|
||||
namespace util
|
||||
{
|
||||
class membuffer
|
||||
{
|
||||
public:
|
||||
membuffer(char *buffer, std::size_t size)
|
||||
{
|
||||
current = start = buffer;
|
||||
end = start + size;
|
||||
}
|
||||
~membuffer()
|
||||
{
|
||||
// maybe? possibly? left out to avoid confusion. for now.
|
||||
// delete start;
|
||||
}
|
||||
/**
|
||||
* Read some value. That's all ;)
|
||||
*/
|
||||
template <class T> void read(T &val)
|
||||
{
|
||||
val = *(T *)current;
|
||||
current += sizeof(T);
|
||||
}
|
||||
/**
|
||||
* Read a big-endian number
|
||||
* valid for 2-byte, 4-byte and 8-byte variables
|
||||
*/
|
||||
template <class T> void read_be(T &val)
|
||||
{
|
||||
val = util::bigswap(*(T *)current);
|
||||
current += sizeof(T);
|
||||
}
|
||||
/**
|
||||
* Read a string in the format:
|
||||
* 2B length (big endian, unsigned)
|
||||
* length bytes data
|
||||
*/
|
||||
void read_jstr(std::string &str)
|
||||
{
|
||||
uint16_t length = 0;
|
||||
read_be(length);
|
||||
str.append(current, length);
|
||||
current += length;
|
||||
}
|
||||
/**
|
||||
* Skip N bytes
|
||||
*/
|
||||
void skip(std::size_t N)
|
||||
{
|
||||
current += N;
|
||||
}
|
||||
|
||||
private:
|
||||
char *start, *end, *current;
|
||||
};
|
||||
}
|
@ -1,26 +0,0 @@
|
||||
cmake_minimum_required(VERSION 3.9.4)
|
||||
project(xz-embedded LANGUAGES C)
|
||||
|
||||
option(XZ_BUILD_BCJ "Build xz-embedded with BCJ support (native binary optimization)" OFF)
|
||||
option(XZ_BUILD_CRC64 "Build xz-embedded with CRC64 checksum support" ON)
|
||||
option(XZ_BUILD_MINIDEC "Build a tiny utility that decompresses xz streams" OFF)
|
||||
|
||||
# See include/xz.h for manual feature configuration
|
||||
# tweak this list and xz.h to fit your needs
|
||||
|
||||
set(XZ_SOURCES
|
||||
src/xz_crc32.c
|
||||
src/xz_crc64.c
|
||||
src/xz_dec_lzma2.c
|
||||
src/xz_dec_stream.c
|
||||
# src/xz_dec_bcj.c
|
||||
)
|
||||
add_library(xz-embedded STATIC ${XZ_SOURCES})
|
||||
target_include_directories(xz-embedded PUBLIC "${CMAKE_CURRENT_SOURCE_DIR}/include")
|
||||
set_property(TARGET xz-embedded PROPERTY C_STANDARD 99)
|
||||
|
||||
if(${XZ_BUILD_MINIDEC})
|
||||
add_executable(xzminidec xzminidec.c)
|
||||
target_link_libraries(xzminidec xz-embedded)
|
||||
set_property(TARGET xzminidec PROPERTY C_STANDARD 99)
|
||||
endif()
|
@ -1,321 +0,0 @@
|
||||
/*
|
||||
* XZ decompressor
|
||||
*
|
||||
* Authors: Lasse Collin <lasse.collin@tukaani.org>
|
||||
* Igor Pavlov <http://7-zip.org/>
|
||||
*
|
||||
* This file has been put into the public domain.
|
||||
* You can do whatever you want with this file.
|
||||
*/
|
||||
|
||||
#ifndef XZ_H
|
||||
#define XZ_H
|
||||
|
||||
#ifdef __KERNEL__
|
||||
#include <linux/stddef.h>
|
||||
#include <linux/types.h>
|
||||
#else
|
||||
#include <stddef.h>
|
||||
#include <stdint.h>
|
||||
#endif
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
/* Definitions that determine available features */
|
||||
#define XZ_DEC_ANY_CHECK 1
|
||||
#define XZ_USE_CRC64 1
|
||||
|
||||
// native machine code compression stuff
|
||||
/*
|
||||
#define XZ_DEC_X86
|
||||
#define XZ_DEC_POWERPC
|
||||
#define XZ_DEC_IA64
|
||||
#define XZ_DEC_ARM
|
||||
#define XZ_DEC_ARMTHUMB
|
||||
#define XZ_DEC_SPARC
|
||||
*/
|
||||
|
||||
/* In Linux, this is used to make extern functions static when needed. */
|
||||
#ifndef XZ_EXTERN
|
||||
#define XZ_EXTERN extern
|
||||
#endif
|
||||
|
||||
/**
|
||||
* enum xz_mode - Operation mode
|
||||
*
|
||||
* @XZ_SINGLE: Single-call mode. This uses less RAM than
|
||||
* than multi-call modes, because the LZMA2
|
||||
* dictionary doesn't need to be allocated as
|
||||
* part of the decoder state. All required data
|
||||
* structures are allocated at initialization,
|
||||
* so xz_dec_run() cannot return XZ_MEM_ERROR.
|
||||
* @XZ_PREALLOC: Multi-call mode with preallocated LZMA2
|
||||
* dictionary buffer. All data structures are
|
||||
* allocated at initialization, so xz_dec_run()
|
||||
* cannot return XZ_MEM_ERROR.
|
||||
* @XZ_DYNALLOC: Multi-call mode. The LZMA2 dictionary is
|
||||
* allocated once the required size has been
|
||||
* parsed from the stream headers. If the
|
||||
* allocation fails, xz_dec_run() will return
|
||||
* XZ_MEM_ERROR.
|
||||
*
|
||||
* It is possible to enable support only for a subset of the above
|
||||
* modes at compile time by defining XZ_DEC_SINGLE, XZ_DEC_PREALLOC,
|
||||
* or XZ_DEC_DYNALLOC. The xz_dec kernel module is always compiled
|
||||
* with support for all operation modes, but the preboot code may
|
||||
* be built with fewer features to minimize code size.
|
||||
*/
|
||||
enum xz_mode
|
||||
{
|
||||
XZ_SINGLE,
|
||||
XZ_PREALLOC,
|
||||
XZ_DYNALLOC
|
||||
};
|
||||
|
||||
/**
|
||||
* enum xz_ret - Return codes
|
||||
* @XZ_OK: Everything is OK so far. More input or more
|
||||
* output space is required to continue. This
|
||||
* return code is possible only in multi-call mode
|
||||
* (XZ_PREALLOC or XZ_DYNALLOC).
|
||||
* @XZ_STREAM_END: Operation finished successfully.
|
||||
* @XZ_UNSUPPORTED_CHECK: Integrity check type is not supported. Decoding
|
||||
* is still possible in multi-call mode by simply
|
||||
* calling xz_dec_run() again.
|
||||
* Note that this return value is used only if
|
||||
* XZ_DEC_ANY_CHECK was defined at build time,
|
||||
* which is not used in the kernel. Unsupported
|
||||
* check types return XZ_OPTIONS_ERROR if
|
||||
* XZ_DEC_ANY_CHECK was not defined at build time.
|
||||
* @XZ_MEM_ERROR: Allocating memory failed. This return code is
|
||||
* possible only if the decoder was initialized
|
||||
* with XZ_DYNALLOC. The amount of memory that was
|
||||
* tried to be allocated was no more than the
|
||||
* dict_max argument given to xz_dec_init().
|
||||
* @XZ_MEMLIMIT_ERROR: A bigger LZMA2 dictionary would be needed than
|
||||
* allowed by the dict_max argument given to
|
||||
* xz_dec_init(). This return value is possible
|
||||
* only in multi-call mode (XZ_PREALLOC or
|
||||
* XZ_DYNALLOC); the single-call mode (XZ_SINGLE)
|
||||
* ignores the dict_max argument.
|
||||
* @XZ_FORMAT_ERROR: File format was not recognized (wrong magic
|
||||
* bytes).
|
||||
* @XZ_OPTIONS_ERROR: This implementation doesn't support the requested
|
||||
* compression options. In the decoder this means
|
||||
* that the header CRC32 matches, but the header
|
||||
* itself specifies something that we don't support.
|
||||
* @XZ_DATA_ERROR: Compressed data is corrupt.
|
||||
* @XZ_BUF_ERROR: Cannot make any progress. Details are slightly
|
||||
* different between multi-call and single-call
|
||||
* mode; more information below.
|
||||
*
|
||||
* In multi-call mode, XZ_BUF_ERROR is returned when two consecutive calls
|
||||
* to XZ code cannot consume any input and cannot produce any new output.
|
||||
* This happens when there is no new input available, or the output buffer
|
||||
* is full while at least one output byte is still pending. Assuming your
|
||||
* code is not buggy, you can get this error only when decoding a compressed
|
||||
* stream that is truncated or otherwise corrupt.
|
||||
*
|
||||
* In single-call mode, XZ_BUF_ERROR is returned only when the output buffer
|
||||
* is too small or the compressed input is corrupt in a way that makes the
|
||||
* decoder produce more output than the caller expected. When it is
|
||||
* (relatively) clear that the compressed input is truncated, XZ_DATA_ERROR
|
||||
* is used instead of XZ_BUF_ERROR.
|
||||
*/
|
||||
enum xz_ret
|
||||
{
|
||||
XZ_OK,
|
||||
XZ_STREAM_END,
|
||||
XZ_UNSUPPORTED_CHECK,
|
||||
XZ_MEM_ERROR,
|
||||
XZ_MEMLIMIT_ERROR,
|
||||
XZ_FORMAT_ERROR,
|
||||
XZ_OPTIONS_ERROR,
|
||||
XZ_DATA_ERROR,
|
||||
XZ_BUF_ERROR
|
||||
};
|
||||
|
||||
/**
|
||||
* struct xz_buf - Passing input and output buffers to XZ code
|
||||
* @in: Beginning of the input buffer. This may be NULL if and only
|
||||
* if in_pos is equal to in_size.
|
||||
* @in_pos: Current position in the input buffer. This must not exceed
|
||||
* in_size.
|
||||
* @in_size: Size of the input buffer
|
||||
* @out: Beginning of the output buffer. This may be NULL if and only
|
||||
* if out_pos is equal to out_size.
|
||||
* @out_pos: Current position in the output buffer. This must not exceed
|
||||
* out_size.
|
||||
* @out_size: Size of the output buffer
|
||||
*
|
||||
* Only the contents of the output buffer from out[out_pos] onward, and
|
||||
* the variables in_pos and out_pos are modified by the XZ code.
|
||||
*/
|
||||
struct xz_buf
|
||||
{
|
||||
const uint8_t *in;
|
||||
size_t in_pos;
|
||||
size_t in_size;
|
||||
|
||||
uint8_t *out;
|
||||
size_t out_pos;
|
||||
size_t out_size;
|
||||
};
|
||||
|
||||
/**
|
||||
* struct xz_dec - Opaque type to hold the XZ decoder state
|
||||
*/
|
||||
struct xz_dec;
|
||||
|
||||
/**
|
||||
* xz_dec_init() - Allocate and initialize a XZ decoder state
|
||||
* @mode: Operation mode
|
||||
* @dict_max: Maximum size of the LZMA2 dictionary (history buffer) for
|
||||
* multi-call decoding. This is ignored in single-call mode
|
||||
* (mode == XZ_SINGLE). LZMA2 dictionary is always 2^n bytes
|
||||
* or 2^n + 2^(n-1) bytes (the latter sizes are less common
|
||||
* in practice), so other values for dict_max don't make sense.
|
||||
* In the kernel, dictionary sizes of 64 KiB, 128 KiB, 256 KiB,
|
||||
* 512 KiB, and 1 MiB are probably the only reasonable values,
|
||||
* except for kernel and initramfs images where a bigger
|
||||
* dictionary can be fine and useful.
|
||||
*
|
||||
* Single-call mode (XZ_SINGLE): xz_dec_run() decodes the whole stream at
|
||||
* once. The caller must provide enough output space or the decoding will
|
||||
* fail. The output space is used as the dictionary buffer, which is why
|
||||
* there is no need to allocate the dictionary as part of the decoder's
|
||||
* internal state.
|
||||
*
|
||||
* Because the output buffer is used as the workspace, streams encoded using
|
||||
* a big dictionary are not a problem in single-call mode. It is enough that
|
||||
* the output buffer is big enough to hold the actual uncompressed data; it
|
||||
* can be smaller than the dictionary size stored in the stream headers.
|
||||
*
|
||||
* Multi-call mode with preallocated dictionary (XZ_PREALLOC): dict_max bytes
|
||||
* of memory is preallocated for the LZMA2 dictionary. This way there is no
|
||||
* risk that xz_dec_run() could run out of memory, since xz_dec_run() will
|
||||
* never allocate any memory. Instead, if the preallocated dictionary is too
|
||||
* small for decoding the given input stream, xz_dec_run() will return
|
||||
* XZ_MEMLIMIT_ERROR. Thus, it is important to know what kind of data will be
|
||||
* decoded to avoid allocating excessive amount of memory for the dictionary.
|
||||
*
|
||||
* Multi-call mode with dynamically allocated dictionary (XZ_DYNALLOC):
|
||||
* dict_max specifies the maximum allowed dictionary size that xz_dec_run()
|
||||
* may allocate once it has parsed the dictionary size from the stream
|
||||
* headers. This way excessive allocations can be avoided while still
|
||||
* limiting the maximum memory usage to a sane value to prevent running the
|
||||
* system out of memory when decompressing streams from untrusted sources.
|
||||
*
|
||||
* On success, xz_dec_init() returns a pointer to struct xz_dec, which is
|
||||
* ready to be used with xz_dec_run(). If memory allocation fails,
|
||||
* xz_dec_init() returns NULL.
|
||||
*/
|
||||
XZ_EXTERN struct xz_dec *xz_dec_init(enum xz_mode mode, uint32_t dict_max);
|
||||
|
||||
/**
|
||||
* xz_dec_run() - Run the XZ decoder
|
||||
* @s: Decoder state allocated using xz_dec_init()
|
||||
* @b: Input and output buffers
|
||||
*
|
||||
* The possible return values depend on build options and operation mode.
|
||||
* See enum xz_ret for details.
|
||||
*
|
||||
* Note that if an error occurs in single-call mode (return value is not
|
||||
* XZ_STREAM_END), b->in_pos and b->out_pos are not modified and the
|
||||
* contents of the output buffer from b->out[b->out_pos] onward are
|
||||
* undefined. This is true even after XZ_BUF_ERROR, because with some filter
|
||||
* chains, there may be a second pass over the output buffer, and this pass
|
||||
* cannot be properly done if the output buffer is truncated. Thus, you
|
||||
* cannot give the single-call decoder a too small buffer and then expect to
|
||||
* get that amount valid data from the beginning of the stream. You must use
|
||||
* the multi-call decoder if you don't want to uncompress the whole stream.
|
||||
*/
|
||||
XZ_EXTERN enum xz_ret xz_dec_run(struct xz_dec *s, struct xz_buf *b);
|
||||
|
||||
/**
|
||||
* xz_dec_reset() - Reset an already allocated decoder state
|
||||
* @s: Decoder state allocated using xz_dec_init()
|
||||
*
|
||||
* This function can be used to reset the multi-call decoder state without
|
||||
* freeing and reallocating memory with xz_dec_end() and xz_dec_init().
|
||||
*
|
||||
* In single-call mode, xz_dec_reset() is always called in the beginning of
|
||||
* xz_dec_run(). Thus, explicit call to xz_dec_reset() is useful only in
|
||||
* multi-call mode.
|
||||
*/
|
||||
XZ_EXTERN void xz_dec_reset(struct xz_dec *s);
|
||||
|
||||
/**
|
||||
* xz_dec_end() - Free the memory allocated for the decoder state
|
||||
* @s: Decoder state allocated using xz_dec_init(). If s is NULL,
|
||||
* this function does nothing.
|
||||
*/
|
||||
XZ_EXTERN void xz_dec_end(struct xz_dec *s);
|
||||
|
||||
/*
|
||||
* Standalone build (userspace build or in-kernel build for boot time use)
|
||||
* needs a CRC32 implementation. For normal in-kernel use, kernel's own
|
||||
* CRC32 module is used instead, and users of this module don't need to
|
||||
* care about the functions below.
|
||||
*/
|
||||
#ifndef XZ_INTERNAL_CRC32
|
||||
#ifdef __KERNEL__
|
||||
#define XZ_INTERNAL_CRC32 0
|
||||
#else
|
||||
#define XZ_INTERNAL_CRC32 1
|
||||
#endif
|
||||
#endif
|
||||
|
||||
/*
|
||||
* If CRC64 support has been enabled with XZ_USE_CRC64, a CRC64
|
||||
* implementation is needed too.
|
||||
*/
|
||||
#ifndef XZ_USE_CRC64
|
||||
#undef XZ_INTERNAL_CRC64
|
||||
#define XZ_INTERNAL_CRC64 0
|
||||
#endif
|
||||
#ifndef XZ_INTERNAL_CRC64
|
||||
#ifdef __KERNEL__
|
||||
#error Using CRC64 in the kernel has not been implemented.
|
||||
#else
|
||||
#define XZ_INTERNAL_CRC64 1
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#if XZ_INTERNAL_CRC32
|
||||
/*
|
||||
* This must be called before any other xz_* function to initialize
|
||||
* the CRC32 lookup table.
|
||||
*/
|
||||
XZ_EXTERN void xz_crc32_init(void);
|
||||
|
||||
/*
|
||||
* Update CRC32 value using the polynomial from IEEE-802.3. To start a new
|
||||
* calculation, the third argument must be zero. To continue the calculation,
|
||||
* the previously returned value is passed as the third argument.
|
||||
*/
|
||||
XZ_EXTERN uint32_t xz_crc32(const uint8_t *buf, size_t size, uint32_t crc);
|
||||
#endif
|
||||
|
||||
#if XZ_INTERNAL_CRC64
|
||||
/*
|
||||
* This must be called before any other xz_* function (except xz_crc32_init())
|
||||
* to initialize the CRC64 lookup table.
|
||||
*/
|
||||
XZ_EXTERN void xz_crc64_init(void);
|
||||
|
||||
/*
|
||||
* Update CRC64 value using the polynomial from ECMA-182. To start a new
|
||||
* calculation, the third argument must be zero. To continue the calculation,
|
||||
* the previously returned value is passed as the third argument.
|
||||
*/
|
||||
XZ_EXTERN uint64_t xz_crc64(const uint8_t *buf, size_t size, uint64_t crc);
|
||||
#endif
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif
|
@ -1,119 +0,0 @@
|
||||
/*
|
||||
* Private includes and definitions for userspace use of XZ Embedded
|
||||
*
|
||||
* Author: Lasse Collin <lasse.collin@tukaani.org>
|
||||
*
|
||||
* This file has been put into the public domain.
|
||||
* You can do whatever you want with this file.
|
||||
*/
|
||||
|
||||
#ifndef XZ_CONFIG_H
|
||||
#define XZ_CONFIG_H
|
||||
|
||||
/* Uncomment to enable CRC64 support. */
|
||||
/* #define XZ_USE_CRC64 */
|
||||
|
||||
/* Uncomment as needed to enable BCJ filter decoders. */
|
||||
/* #define XZ_DEC_X86 */
|
||||
/* #define XZ_DEC_POWERPC */
|
||||
/* #define XZ_DEC_IA64 */
|
||||
/* #define XZ_DEC_ARM */
|
||||
/* #define XZ_DEC_ARMTHUMB */
|
||||
/* #define XZ_DEC_SPARC */
|
||||
|
||||
/*
|
||||
* MSVC doesn't support modern C but XZ Embedded is mostly C89
|
||||
* so these are enough.
|
||||
*/
|
||||
#ifdef _MSC_VER
|
||||
typedef unsigned char bool;
|
||||
#define true 1
|
||||
#define false 0
|
||||
#define inline __inline
|
||||
#else
|
||||
#include <stdbool.h>
|
||||
#endif
|
||||
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
|
||||
#include "xz.h"
|
||||
|
||||
#define kmalloc(size, flags) malloc(size)
|
||||
#define kfree(ptr) free(ptr)
|
||||
#define vmalloc(size) malloc(size)
|
||||
#define vfree(ptr) free(ptr)
|
||||
|
||||
#define memeq(a, b, size) (memcmp(a, b, size) == 0)
|
||||
#define memzero(buf, size) memset(buf, 0, size)
|
||||
|
||||
#ifndef min
|
||||
#define min(x, y) ((x) < (y) ? (x) : (y))
|
||||
#endif
|
||||
#define min_t(type, x, y) min(x, y)
|
||||
|
||||
/*
|
||||
* Some functions have been marked with __always_inline to keep the
|
||||
* performance reasonable even when the compiler is optimizing for
|
||||
* small code size. You may be able to save a few bytes by #defining
|
||||
* __always_inline to plain inline, but don't complain if the code
|
||||
* becomes slow.
|
||||
*
|
||||
* NOTE: System headers on GNU/Linux may #define this macro already,
|
||||
* so if you want to change it, you need to #undef it first.
|
||||
*/
|
||||
#ifndef __always_inline
|
||||
#ifdef __GNUC__
|
||||
#define __always_inline inline __attribute__((__always_inline__))
|
||||
#else
|
||||
#define __always_inline inline
|
||||
#endif
|
||||
#endif
|
||||
|
||||
/* Inline functions to access unaligned unsigned 32-bit integers */
|
||||
#ifndef get_unaligned_le32
|
||||
static inline uint32_t get_unaligned_le32(const uint8_t *buf)
|
||||
{
|
||||
return (uint32_t)buf[0] | ((uint32_t)buf[1] << 8) | ((uint32_t)buf[2] << 16) |
|
||||
((uint32_t)buf[3] << 24);
|
||||
}
|
||||
#endif
|
||||
|
||||
#ifndef get_unaligned_be32
|
||||
static inline uint32_t get_unaligned_be32(const uint8_t *buf)
|
||||
{
|
||||
return (uint32_t)(buf[0] << 24) | ((uint32_t)buf[1] << 16) | ((uint32_t)buf[2] << 8) |
|
||||
(uint32_t)buf[3];
|
||||
}
|
||||
#endif
|
||||
|
||||
#ifndef put_unaligned_le32
|
||||
static inline void put_unaligned_le32(uint32_t val, uint8_t *buf)
|
||||
{
|
||||
buf[0] = (uint8_t)val;
|
||||
buf[1] = (uint8_t)(val >> 8);
|
||||
buf[2] = (uint8_t)(val >> 16);
|
||||
buf[3] = (uint8_t)(val >> 24);
|
||||
}
|
||||
#endif
|
||||
|
||||
#ifndef put_unaligned_be32
|
||||
static inline void put_unaligned_be32(uint32_t val, uint8_t *buf)
|
||||
{
|
||||
buf[0] = (uint8_t)(val >> 24);
|
||||
buf[1] = (uint8_t)(val >> 16);
|
||||
buf[2] = (uint8_t)(val >> 8);
|
||||
buf[3] = (uint8_t)val;
|
||||
}
|
||||
#endif
|
||||
|
||||
/*
|
||||
* Use get_unaligned_le32() also for aligned access for simplicity. On
|
||||
* little endian systems, #define get_le32(ptr) (*(const uint32_t *)(ptr))
|
||||
* could save a few bytes in code size.
|
||||
*/
|
||||
#ifndef get_le32
|
||||
#define get_le32 get_unaligned_le32
|
||||
#endif
|
||||
|
||||
#endif
|
@ -1,61 +0,0 @@
|
||||
/*
|
||||
* CRC32 using the polynomial from IEEE-802.3
|
||||
*
|
||||
* Authors: Lasse Collin <lasse.collin@tukaani.org>
|
||||
* Igor Pavlov <http://7-zip.org/>
|
||||
*
|
||||
* This file has been put into the public domain.
|
||||
* You can do whatever you want with this file.
|
||||
*/
|
||||
|
||||
/*
|
||||
* This is not the fastest implementation, but it is pretty compact.
|
||||
* The fastest versions of xz_crc32() on modern CPUs without hardware
|
||||
* accelerated CRC instruction are 3-5 times as fast as this version,
|
||||
* but they are bigger and use more memory for the lookup table.
|
||||
*/
|
||||
|
||||
#include "xz_private.h"
|
||||
|
||||
/*
|
||||
* STATIC_RW_DATA is used in the pre-boot environment on some architectures.
|
||||
* See <linux/decompress/mm.h> for details.
|
||||
*/
|
||||
#ifndef STATIC_RW_DATA
|
||||
#define STATIC_RW_DATA static
|
||||
#endif
|
||||
|
||||
STATIC_RW_DATA uint32_t xz_crc32_table[256];
|
||||
|
||||
XZ_EXTERN void xz_crc32_init(void)
|
||||
{
|
||||
const uint32_t poly = 0xEDB88320;
|
||||
|
||||
uint32_t i;
|
||||
uint32_t j;
|
||||
uint32_t r;
|
||||
|
||||
for (i = 0; i < 256; ++i)
|
||||
{
|
||||
r = i;
|
||||
for (j = 0; j < 8; ++j)
|
||||
r = (r >> 1) ^ (poly & ~((r & 1) - 1));
|
||||
|
||||
xz_crc32_table[i] = r;
|
||||
}
|
||||
|
||||
return;
|
||||
}
|
||||
|
||||
XZ_EXTERN uint32_t xz_crc32(const uint8_t *buf, size_t size, uint32_t crc)
|
||||
{
|
||||
crc = ~crc;
|
||||
|
||||
while (size != 0)
|
||||
{
|
||||
crc = xz_crc32_table[*buf++ ^ (crc & 0xFF)] ^ (crc >> 8);
|
||||
--size;
|
||||
}
|
||||
|
||||
return ~crc;
|
||||
}
|
@ -1,52 +0,0 @@
|
||||
/*
|
||||
* CRC64 using the polynomial from ECMA-182
|
||||
*
|
||||
* This file is similar to xz_crc32.c. See the comments there.
|
||||
*
|
||||
* Authors: Lasse Collin <lasse.collin@tukaani.org>
|
||||
* Igor Pavlov <http://7-zip.org/>
|
||||
*
|
||||
* This file has been put into the public domain.
|
||||
* You can do whatever you want with this file.
|
||||
*/
|
||||
|
||||
#include "xz_private.h"
|
||||
|
||||
#ifndef STATIC_RW_DATA
|
||||
#define STATIC_RW_DATA static
|
||||
#endif
|
||||
|
||||
STATIC_RW_DATA uint64_t xz_crc64_table[256];
|
||||
|
||||
XZ_EXTERN void xz_crc64_init(void)
|
||||
{
|
||||
const uint64_t poly = 0xC96C5795D7870F42;
|
||||
|
||||
uint32_t i;
|
||||
uint32_t j;
|
||||
uint64_t r;
|
||||
|
||||
for (i = 0; i < 256; ++i)
|
||||
{
|
||||
r = i;
|
||||
for (j = 0; j < 8; ++j)
|
||||
r = (r >> 1) ^ (poly & ~((r & 1) - 1));
|
||||
|
||||
xz_crc64_table[i] = r;
|
||||
}
|
||||
|
||||
return;
|
||||
}
|
||||
|
||||
XZ_EXTERN uint64_t xz_crc64(const uint8_t *buf, size_t size, uint64_t crc)
|
||||
{
|
||||
crc = ~crc;
|
||||
|
||||
while (size != 0)
|
||||
{
|
||||
crc = xz_crc64_table[*buf++ ^ (crc & 0xFF)] ^ (crc >> 8);
|
||||
--size;
|
||||
}
|
||||
|
||||
return ~crc;
|
||||
}
|
@ -1,588 +0,0 @@
|
||||
/*
|
||||
* Branch/Call/Jump (BCJ) filter decoders
|
||||
*
|
||||
* Authors: Lasse Collin <lasse.collin@tukaani.org>
|
||||
* Igor Pavlov <http://7-zip.org/>
|
||||
*
|
||||
* This file has been put into the public domain.
|
||||
* You can do whatever you want with this file.
|
||||
*/
|
||||
|
||||
#include "xz_private.h"
|
||||
|
||||
/*
|
||||
* The rest of the file is inside this ifdef. It makes things a little more
|
||||
* convenient when building without support for any BCJ filters.
|
||||
*/
|
||||
#ifdef XZ_DEC_BCJ
|
||||
|
||||
struct xz_dec_bcj
|
||||
{
|
||||
/* Type of the BCJ filter being used */
|
||||
enum
|
||||
{
|
||||
BCJ_X86 = 4, /* x86 or x86-64 */
|
||||
BCJ_POWERPC = 5, /* Big endian only */
|
||||
BCJ_IA64 = 6, /* Big or little endian */
|
||||
BCJ_ARM = 7, /* Little endian only */
|
||||
BCJ_ARMTHUMB = 8, /* Little endian only */
|
||||
BCJ_SPARC = 9 /* Big or little endian */
|
||||
} type;
|
||||
|
||||
/*
|
||||
* Return value of the next filter in the chain. We need to preserve
|
||||
* this information across calls, because we must not call the next
|
||||
* filter anymore once it has returned XZ_STREAM_END.
|
||||
*/
|
||||
enum xz_ret ret;
|
||||
|
||||
/* True if we are operating in single-call mode. */
|
||||
bool single_call;
|
||||
|
||||
/*
|
||||
* Absolute position relative to the beginning of the uncompressed
|
||||
* data (in a single .xz Block). We care only about the lowest 32
|
||||
* bits so this doesn't need to be uint64_t even with big files.
|
||||
*/
|
||||
uint32_t pos;
|
||||
|
||||
/* x86 filter state */
|
||||
uint32_t x86_prev_mask;
|
||||
|
||||
/* Temporary space to hold the variables from struct xz_buf */
|
||||
uint8_t *out;
|
||||
size_t out_pos;
|
||||
size_t out_size;
|
||||
|
||||
struct
|
||||
{
|
||||
/* Amount of already filtered data in the beginning of buf */
|
||||
size_t filtered;
|
||||
|
||||
/* Total amount of data currently stored in buf */
|
||||
size_t size;
|
||||
|
||||
/*
|
||||
* Buffer to hold a mix of filtered and unfiltered data. This
|
||||
* needs to be big enough to hold Alignment + 2 * Look-ahead:
|
||||
*
|
||||
* Type Alignment Look-ahead
|
||||
* x86 1 4
|
||||
* PowerPC 4 0
|
||||
* IA-64 16 0
|
||||
* ARM 4 0
|
||||
* ARM-Thumb 2 2
|
||||
* SPARC 4 0
|
||||
*/
|
||||
uint8_t buf[16];
|
||||
} temp;
|
||||
};
|
||||
|
||||
#ifdef XZ_DEC_X86
|
||||
/*
|
||||
* This is used to test the most significant byte of a memory address
|
||||
* in an x86 instruction.
|
||||
*/
|
||||
static inline int bcj_x86_test_msbyte(uint8_t b)
|
||||
{
|
||||
return b == 0x00 || b == 0xFF;
|
||||
}
|
||||
|
||||
static size_t bcj_x86(struct xz_dec_bcj *s, uint8_t *buf, size_t size)
|
||||
{
|
||||
static const bool mask_to_allowed_status[8] = {true, true, true, false,
|
||||
true, false, false, false};
|
||||
|
||||
static const uint8_t mask_to_bit_num[8] = {0, 1, 2, 2, 3, 3, 3, 3};
|
||||
|
||||
size_t i;
|
||||
size_t prev_pos = (size_t) - 1;
|
||||
uint32_t prev_mask = s->x86_prev_mask;
|
||||
uint32_t src;
|
||||
uint32_t dest;
|
||||
uint32_t j;
|
||||
uint8_t b;
|
||||
|
||||
if (size <= 4)
|
||||
return 0;
|
||||
|
||||
size -= 4;
|
||||
for (i = 0; i < size; ++i)
|
||||
{
|
||||
if ((buf[i] & 0xFE) != 0xE8)
|
||||
continue;
|
||||
|
||||
prev_pos = i - prev_pos;
|
||||
if (prev_pos > 3)
|
||||
{
|
||||
prev_mask = 0;
|
||||
}
|
||||
else
|
||||
{
|
||||
prev_mask = (prev_mask << (prev_pos - 1)) & 7;
|
||||
if (prev_mask != 0)
|
||||
{
|
||||
b = buf[i + 4 - mask_to_bit_num[prev_mask]];
|
||||
if (!mask_to_allowed_status[prev_mask] || bcj_x86_test_msbyte(b))
|
||||
{
|
||||
prev_pos = i;
|
||||
prev_mask = (prev_mask << 1) | 1;
|
||||
continue;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
prev_pos = i;
|
||||
|
||||
if (bcj_x86_test_msbyte(buf[i + 4]))
|
||||
{
|
||||
src = get_unaligned_le32(buf + i + 1);
|
||||
while (true)
|
||||
{
|
||||
dest = src - (s->pos + (uint32_t)i + 5);
|
||||
if (prev_mask == 0)
|
||||
break;
|
||||
|
||||
j = mask_to_bit_num[prev_mask] * 8;
|
||||
b = (uint8_t)(dest >> (24 - j));
|
||||
if (!bcj_x86_test_msbyte(b))
|
||||
break;
|
||||
|
||||
src = dest ^ (((uint32_t)1 << (32 - j)) - 1);
|
||||
}
|
||||
|
||||
dest &= 0x01FFFFFF;
|
||||
dest |= (uint32_t)0 - (dest & 0x01000000);
|
||||
put_unaligned_le32(dest, buf + i + 1);
|
||||
i += 4;
|
||||
}
|
||||
else
|
||||
{
|
||||
prev_mask = (prev_mask << 1) | 1;
|
||||
}
|
||||
}
|
||||
|
||||
prev_pos = i - prev_pos;
|
||||
s->x86_prev_mask = prev_pos > 3 ? 0 : prev_mask << (prev_pos - 1);
|
||||
return i;
|
||||
}
|
||||
#endif
|
||||
|
||||
#ifdef XZ_DEC_POWERPC
|
||||
static size_t bcj_powerpc(struct xz_dec_bcj *s, uint8_t *buf, size_t size)
|
||||
{
|
||||
size_t i;
|
||||
uint32_t instr;
|
||||
|
||||
for (i = 0; i + 4 <= size; i += 4)
|
||||
{
|
||||
instr = get_unaligned_be32(buf + i);
|
||||
if ((instr & 0xFC000003) == 0x48000001)
|
||||
{
|
||||
instr &= 0x03FFFFFC;
|
||||
instr -= s->pos + (uint32_t)i;
|
||||
instr &= 0x03FFFFFC;
|
||||
instr |= 0x48000001;
|
||||
put_unaligned_be32(instr, buf + i);
|
||||
}
|
||||
}
|
||||
|
||||
return i;
|
||||
}
|
||||
#endif
|
||||
|
||||
#ifdef XZ_DEC_IA64
|
||||
static size_t bcj_ia64(struct xz_dec_bcj *s, uint8_t *buf, size_t size)
|
||||
{
|
||||
static const uint8_t branch_table[32] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
4, 4, 6, 6, 0, 0, 7, 7, 4, 4, 0, 0, 4, 4, 0, 0};
|
||||
|
||||
/*
|
||||
* The local variables take a little bit stack space, but it's less
|
||||
* than what LZMA2 decoder takes, so it doesn't make sense to reduce
|
||||
* stack usage here without doing that for the LZMA2 decoder too.
|
||||
*/
|
||||
|
||||
/* Loop counters */
|
||||
size_t i;
|
||||
size_t j;
|
||||
|
||||
/* Instruction slot (0, 1, or 2) in the 128-bit instruction word */
|
||||
uint32_t slot;
|
||||
|
||||
/* Bitwise offset of the instruction indicated by slot */
|
||||
uint32_t bit_pos;
|
||||
|
||||
/* bit_pos split into byte and bit parts */
|
||||
uint32_t byte_pos;
|
||||
uint32_t bit_res;
|
||||
|
||||
/* Address part of an instruction */
|
||||
uint32_t addr;
|
||||
|
||||
/* Mask used to detect which instructions to convert */
|
||||
uint32_t mask;
|
||||
|
||||
/* 41-bit instruction stored somewhere in the lowest 48 bits */
|
||||
uint64_t instr;
|
||||
|
||||
/* Instruction normalized with bit_res for easier manipulation */
|
||||
uint64_t norm;
|
||||
|
||||
for (i = 0; i + 16 <= size; i += 16)
|
||||
{
|
||||
mask = branch_table[buf[i] & 0x1F];
|
||||
for (slot = 0, bit_pos = 5; slot < 3; ++slot, bit_pos += 41)
|
||||
{
|
||||
if (((mask >> slot) & 1) == 0)
|
||||
continue;
|
||||
|
||||
byte_pos = bit_pos >> 3;
|
||||
bit_res = bit_pos & 7;
|
||||
instr = 0;
|
||||
for (j = 0; j < 6; ++j)
|
||||
instr |= (uint64_t)(buf[i + j + byte_pos]) << (8 * j);
|
||||
|
||||
norm = instr >> bit_res;
|
||||
|
||||
if (((norm >> 37) & 0x0F) == 0x05 && ((norm >> 9) & 0x07) == 0)
|
||||
{
|
||||
addr = (norm >> 13) & 0x0FFFFF;
|
||||
addr |= ((uint32_t)(norm >> 36) & 1) << 20;
|
||||
addr <<= 4;
|
||||
addr -= s->pos + (uint32_t)i;
|
||||
addr >>= 4;
|
||||
|
||||
norm &= ~((uint64_t)0x8FFFFF << 13);
|
||||
norm |= (uint64_t)(addr & 0x0FFFFF) << 13;
|
||||
norm |= (uint64_t)(addr & 0x100000) << (36 - 20);
|
||||
|
||||
instr &= (1 << bit_res) - 1;
|
||||
instr |= norm << bit_res;
|
||||
|
||||
for (j = 0; j < 6; j++)
|
||||
buf[i + j + byte_pos] = (uint8_t)(instr >> (8 * j));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return i;
|
||||
}
|
||||
#endif
|
||||
|
||||
#ifdef XZ_DEC_ARM
|
||||
static size_t bcj_arm(struct xz_dec_bcj *s, uint8_t *buf, size_t size)
|
||||
{
|
||||
size_t i;
|
||||
uint32_t addr;
|
||||
|
||||
for (i = 0; i + 4 <= size; i += 4)
|
||||
{
|
||||
if (buf[i + 3] == 0xEB)
|
||||
{
|
||||
addr =
|
||||
(uint32_t)buf[i] | ((uint32_t)buf[i + 1] << 8) | ((uint32_t)buf[i + 2] << 16);
|
||||
addr <<= 2;
|
||||
addr -= s->pos + (uint32_t)i + 8;
|
||||
addr >>= 2;
|
||||
buf[i] = (uint8_t)addr;
|
||||
buf[i + 1] = (uint8_t)(addr >> 8);
|
||||
buf[i + 2] = (uint8_t)(addr >> 16);
|
||||
}
|
||||
}
|
||||
|
||||
return i;
|
||||
}
|
||||
#endif
|
||||
|
||||
#ifdef XZ_DEC_ARMTHUMB
|
||||
static size_t bcj_armthumb(struct xz_dec_bcj *s, uint8_t *buf, size_t size)
|
||||
{
|
||||
size_t i;
|
||||
uint32_t addr;
|
||||
|
||||
for (i = 0; i + 4 <= size; i += 2)
|
||||
{
|
||||
if ((buf[i + 1] & 0xF8) == 0xF0 && (buf[i + 3] & 0xF8) == 0xF8)
|
||||
{
|
||||
addr = (((uint32_t)buf[i + 1] & 0x07) << 19) | ((uint32_t)buf[i] << 11) |
|
||||
(((uint32_t)buf[i + 3] & 0x07) << 8) | (uint32_t)buf[i + 2];
|
||||
addr <<= 1;
|
||||
addr -= s->pos + (uint32_t)i + 4;
|
||||
addr >>= 1;
|
||||
buf[i + 1] = (uint8_t)(0xF0 | ((addr >> 19) & 0x07));
|
||||
buf[i] = (uint8_t)(addr >> 11);
|
||||
buf[i + 3] = (uint8_t)(0xF8 | ((addr >> 8) & 0x07));
|
||||
buf[i + 2] = (uint8_t)addr;
|
||||
i += 2;
|
||||
}
|
||||
}
|
||||
|
||||
return i;
|
||||
}
|
||||
#endif
|
||||
|
||||
#ifdef XZ_DEC_SPARC
|
||||
static size_t bcj_sparc(struct xz_dec_bcj *s, uint8_t *buf, size_t size)
|
||||
{
|
||||
size_t i;
|
||||
uint32_t instr;
|
||||
|
||||
for (i = 0; i + 4 <= size; i += 4)
|
||||
{
|
||||
instr = get_unaligned_be32(buf + i);
|
||||
if ((instr >> 22) == 0x100 || (instr >> 22) == 0x1FF)
|
||||
{
|
||||
instr <<= 2;
|
||||
instr -= s->pos + (uint32_t)i;
|
||||
instr >>= 2;
|
||||
instr =
|
||||
((uint32_t)0x40000000 - (instr & 0x400000)) | 0x40000000 | (instr & 0x3FFFFF);
|
||||
put_unaligned_be32(instr, buf + i);
|
||||
}
|
||||
}
|
||||
|
||||
return i;
|
||||
}
|
||||
#endif
|
||||
|
||||
/*
|
||||
* Apply the selected BCJ filter. Update *pos and s->pos to match the amount
|
||||
* of data that got filtered.
|
||||
*
|
||||
* NOTE: This is implemented as a switch statement to avoid using function
|
||||
* pointers, which could be problematic in the kernel boot code, which must
|
||||
* avoid pointers to static data (at least on x86).
|
||||
*/
|
||||
static void bcj_apply(struct xz_dec_bcj *s, uint8_t *buf, size_t *pos, size_t size)
|
||||
{
|
||||
size_t filtered;
|
||||
|
||||
buf += *pos;
|
||||
size -= *pos;
|
||||
|
||||
switch (s->type)
|
||||
{
|
||||
#ifdef XZ_DEC_X86
|
||||
case BCJ_X86:
|
||||
filtered = bcj_x86(s, buf, size);
|
||||
break;
|
||||
#endif
|
||||
#ifdef XZ_DEC_POWERPC
|
||||
case BCJ_POWERPC:
|
||||
filtered = bcj_powerpc(s, buf, size);
|
||||
break;
|
||||
#endif
|
||||
#ifdef XZ_DEC_IA64
|
||||
case BCJ_IA64:
|
||||
filtered = bcj_ia64(s, buf, size);
|
||||
break;
|
||||
#endif
|
||||
#ifdef XZ_DEC_ARM
|
||||
case BCJ_ARM:
|
||||
filtered = bcj_arm(s, buf, size);
|
||||
break;
|
||||
#endif
|
||||
#ifdef XZ_DEC_ARMTHUMB
|
||||
case BCJ_ARMTHUMB:
|
||||
filtered = bcj_armthumb(s, buf, size);
|
||||
break;
|
||||
#endif
|
||||
#ifdef XZ_DEC_SPARC
|
||||
case BCJ_SPARC:
|
||||
filtered = bcj_sparc(s, buf, size);
|
||||
break;
|
||||
#endif
|
||||
default:
|
||||
/* Never reached but silence compiler warnings. */
|
||||
filtered = 0;
|
||||
break;
|
||||
}
|
||||
|
||||
*pos += filtered;
|
||||
s->pos += filtered;
|
||||
}
|
||||
|
||||
/*
|
||||
* Flush pending filtered data from temp to the output buffer.
|
||||
* Move the remaining mixture of possibly filtered and unfiltered
|
||||
* data to the beginning of temp.
|
||||
*/
|
||||
static void bcj_flush(struct xz_dec_bcj *s, struct xz_buf *b)
|
||||
{
|
||||
size_t copy_size;
|
||||
|
||||
copy_size = min_t(size_t, s->temp.filtered, b->out_size - b->out_pos);
|
||||
memcpy(b->out + b->out_pos, s->temp.buf, copy_size);
|
||||
b->out_pos += copy_size;
|
||||
|
||||
s->temp.filtered -= copy_size;
|
||||
s->temp.size -= copy_size;
|
||||
memmove(s->temp.buf, s->temp.buf + copy_size, s->temp.size);
|
||||
}
|
||||
|
||||
/*
|
||||
* The BCJ filter functions are primitive in sense that they process the
|
||||
* data in chunks of 1-16 bytes. To hide this issue, this function does
|
||||
* some buffering.
|
||||
*/
|
||||
XZ_EXTERN enum xz_ret xz_dec_bcj_run(struct xz_dec_bcj *s, struct xz_dec_lzma2 *lzma2,
|
||||
struct xz_buf *b)
|
||||
{
|
||||
size_t out_start;
|
||||
|
||||
/*
|
||||
* Flush pending already filtered data to the output buffer. Return
|
||||
* immediatelly if we couldn't flush everything, or if the next
|
||||
* filter in the chain had already returned XZ_STREAM_END.
|
||||
*/
|
||||
if (s->temp.filtered > 0)
|
||||
{
|
||||
bcj_flush(s, b);
|
||||
if (s->temp.filtered > 0)
|
||||
return XZ_OK;
|
||||
|
||||
if (s->ret == XZ_STREAM_END)
|
||||
return XZ_STREAM_END;
|
||||
}
|
||||
|
||||
/*
|
||||
* If we have more output space than what is currently pending in
|
||||
* temp, copy the unfiltered data from temp to the output buffer
|
||||
* and try to fill the output buffer by decoding more data from the
|
||||
* next filter in the chain. Apply the BCJ filter on the new data
|
||||
* in the output buffer. If everything cannot be filtered, copy it
|
||||
* to temp and rewind the output buffer position accordingly.
|
||||
*
|
||||
* This needs to be always run when temp.size == 0 to handle a special
|
||||
* case where the output buffer is full and the next filter has no
|
||||
* more output coming but hasn't returned XZ_STREAM_END yet.
|
||||
*/
|
||||
if (s->temp.size < b->out_size - b->out_pos || s->temp.size == 0)
|
||||
{
|
||||
out_start = b->out_pos;
|
||||
memcpy(b->out + b->out_pos, s->temp.buf, s->temp.size);
|
||||
b->out_pos += s->temp.size;
|
||||
|
||||
s->ret = xz_dec_lzma2_run(lzma2, b);
|
||||
if (s->ret != XZ_STREAM_END && (s->ret != XZ_OK || s->single_call))
|
||||
return s->ret;
|
||||
|
||||
bcj_apply(s, b->out, &out_start, b->out_pos);
|
||||
|
||||
/*
|
||||
* As an exception, if the next filter returned XZ_STREAM_END,
|
||||
* we can do that too, since the last few bytes that remain
|
||||
* unfiltered are meant to remain unfiltered.
|
||||
*/
|
||||
if (s->ret == XZ_STREAM_END)
|
||||
return XZ_STREAM_END;
|
||||
|
||||
s->temp.size = b->out_pos - out_start;
|
||||
b->out_pos -= s->temp.size;
|
||||
memcpy(s->temp.buf, b->out + b->out_pos, s->temp.size);
|
||||
|
||||
/*
|
||||
* If there wasn't enough input to the next filter to fill
|
||||
* the output buffer with unfiltered data, there's no point
|
||||
* to try decoding more data to temp.
|
||||
*/
|
||||
if (b->out_pos + s->temp.size < b->out_size)
|
||||
return XZ_OK;
|
||||
}
|
||||
|
||||
/*
|
||||
* We have unfiltered data in temp. If the output buffer isn't full
|
||||
* yet, try to fill the temp buffer by decoding more data from the
|
||||
* next filter. Apply the BCJ filter on temp. Then we hopefully can
|
||||
* fill the actual output buffer by copying filtered data from temp.
|
||||
* A mix of filtered and unfiltered data may be left in temp; it will
|
||||
* be taken care on the next call to this function.
|
||||
*/
|
||||
if (b->out_pos < b->out_size)
|
||||
{
|
||||
/* Make b->out{,_pos,_size} temporarily point to s->temp. */
|
||||
s->out = b->out;
|
||||
s->out_pos = b->out_pos;
|
||||
s->out_size = b->out_size;
|
||||
b->out = s->temp.buf;
|
||||
b->out_pos = s->temp.size;
|
||||
b->out_size = sizeof(s->temp.buf);
|
||||
|
||||
s->ret = xz_dec_lzma2_run(lzma2, b);
|
||||
|
||||
s->temp.size = b->out_pos;
|
||||
b->out = s->out;
|
||||
b->out_pos = s->out_pos;
|
||||
b->out_size = s->out_size;
|
||||
|
||||
if (s->ret != XZ_OK && s->ret != XZ_STREAM_END)
|
||||
return s->ret;
|
||||
|
||||
bcj_apply(s, s->temp.buf, &s->temp.filtered, s->temp.size);
|
||||
|
||||
/*
|
||||
* If the next filter returned XZ_STREAM_END, we mark that
|
||||
* everything is filtered, since the last unfiltered bytes
|
||||
* of the stream are meant to be left as is.
|
||||
*/
|
||||
if (s->ret == XZ_STREAM_END)
|
||||
s->temp.filtered = s->temp.size;
|
||||
|
||||
bcj_flush(s, b);
|
||||
if (s->temp.filtered > 0)
|
||||
return XZ_OK;
|
||||
}
|
||||
|
||||
return s->ret;
|
||||
}
|
||||
|
||||
XZ_EXTERN struct xz_dec_bcj *xz_dec_bcj_create(bool single_call)
|
||||
{
|
||||
struct xz_dec_bcj *s = kmalloc(sizeof(*s), GFP_KERNEL);
|
||||
if (s != NULL)
|
||||
s->single_call = single_call;
|
||||
|
||||
return s;
|
||||
}
|
||||
|
||||
XZ_EXTERN enum xz_ret xz_dec_bcj_reset(struct xz_dec_bcj *s, uint8_t id)
|
||||
{
|
||||
switch (id)
|
||||
{
|
||||
#ifdef XZ_DEC_X86
|
||||
case BCJ_X86:
|
||||
#endif
|
||||
#ifdef XZ_DEC_POWERPC
|
||||
case BCJ_POWERPC:
|
||||
#endif
|
||||
#ifdef XZ_DEC_IA64
|
||||
case BCJ_IA64:
|
||||
#endif
|
||||
#ifdef XZ_DEC_ARM
|
||||
case BCJ_ARM:
|
||||
#endif
|
||||
#ifdef XZ_DEC_ARMTHUMB
|
||||
case BCJ_ARMTHUMB:
|
||||
#endif
|
||||
#ifdef XZ_DEC_SPARC
|
||||
case BCJ_SPARC:
|
||||
#endif
|
||||
break;
|
||||
|
||||
default:
|
||||
/* Unsupported Filter ID */
|
||||
return XZ_OPTIONS_ERROR;
|
||||
}
|
||||
|
||||
s->type = id;
|
||||
s->ret = XZ_OK;
|
||||
s->pos = 0;
|
||||
s->x86_prev_mask = 0;
|
||||
s->temp.filtered = 0;
|
||||
s->temp.size = 0;
|
||||
|
||||
return XZ_OK;
|
||||
}
|
||||
|
||||
#endif
|
File diff suppressed because it is too large
Load Diff
@ -1,860 +0,0 @@
|
||||
/*
|
||||
* .xz Stream decoder
|
||||
*
|
||||
* Author: Lasse Collin <lasse.collin@tukaani.org>
|
||||
*
|
||||
* This file has been put into the public domain.
|
||||
* You can do whatever you want with this file.
|
||||
*/
|
||||
|
||||
#include "xz_private.h"
|
||||
#include "xz_stream.h"
|
||||
|
||||
#ifdef XZ_USE_CRC64
|
||||
#define IS_CRC64(check_type) ((check_type) == XZ_CHECK_CRC64)
|
||||
#else
|
||||
#define IS_CRC64(check_type) false
|
||||
#endif
|
||||
|
||||
/* Hash used to validate the Index field */
|
||||
struct xz_dec_hash
|
||||
{
|
||||
vli_type unpadded;
|
||||
vli_type uncompressed;
|
||||
uint32_t crc32;
|
||||
};
|
||||
|
||||
struct xz_dec
|
||||
{
|
||||
/* Position in dec_main() */
|
||||
enum
|
||||
{
|
||||
SEQ_STREAM_HEADER,
|
||||
SEQ_BLOCK_START,
|
||||
SEQ_BLOCK_HEADER,
|
||||
SEQ_BLOCK_UNCOMPRESS,
|
||||
SEQ_BLOCK_PADDING,
|
||||
SEQ_BLOCK_CHECK,
|
||||
SEQ_INDEX,
|
||||
SEQ_INDEX_PADDING,
|
||||
SEQ_INDEX_CRC32,
|
||||
SEQ_STREAM_FOOTER
|
||||
} sequence;
|
||||
|
||||
/* Position in variable-length integers and Check fields */
|
||||
uint32_t pos;
|
||||
|
||||
/* Variable-length integer decoded by dec_vli() */
|
||||
vli_type vli;
|
||||
|
||||
/* Saved in_pos and out_pos */
|
||||
size_t in_start;
|
||||
size_t out_start;
|
||||
|
||||
#ifdef XZ_USE_CRC64
|
||||
/* CRC32 or CRC64 value in Block or CRC32 value in Index */
|
||||
uint64_t crc;
|
||||
#else
|
||||
/* CRC32 value in Block or Index */
|
||||
uint32_t crc;
|
||||
#endif
|
||||
|
||||
/* Type of the integrity check calculated from uncompressed data */
|
||||
enum xz_check check_type;
|
||||
|
||||
/* Operation mode */
|
||||
enum xz_mode mode;
|
||||
|
||||
/*
|
||||
* True if the next call to xz_dec_run() is allowed to return
|
||||
* XZ_BUF_ERROR.
|
||||
*/
|
||||
bool allow_buf_error;
|
||||
|
||||
/* Information stored in Block Header */
|
||||
struct
|
||||
{
|
||||
/*
|
||||
* Value stored in the Compressed Size field, or
|
||||
* VLI_UNKNOWN if Compressed Size is not present.
|
||||
*/
|
||||
vli_type compressed;
|
||||
|
||||
/*
|
||||
* Value stored in the Uncompressed Size field, or
|
||||
* VLI_UNKNOWN if Uncompressed Size is not present.
|
||||
*/
|
||||
vli_type uncompressed;
|
||||
|
||||
/* Size of the Block Header field */
|
||||
uint32_t size;
|
||||
} block_header;
|
||||
|
||||
/* Information collected when decoding Blocks */
|
||||
struct
|
||||
{
|
||||
/* Observed compressed size of the current Block */
|
||||
vli_type compressed;
|
||||
|
||||
/* Observed uncompressed size of the current Block */
|
||||
vli_type uncompressed;
|
||||
|
||||
/* Number of Blocks decoded so far */
|
||||
vli_type count;
|
||||
|
||||
/*
|
||||
* Hash calculated from the Block sizes. This is used to
|
||||
* validate the Index field.
|
||||
*/
|
||||
struct xz_dec_hash hash;
|
||||
} block;
|
||||
|
||||
/* Variables needed when verifying the Index field */
|
||||
struct
|
||||
{
|
||||
/* Position in dec_index() */
|
||||
enum
|
||||
{
|
||||
SEQ_INDEX_COUNT,
|
||||
SEQ_INDEX_UNPADDED,
|
||||
SEQ_INDEX_UNCOMPRESSED
|
||||
} sequence;
|
||||
|
||||
/* Size of the Index in bytes */
|
||||
vli_type size;
|
||||
|
||||
/* Number of Records (matches block.count in valid files) */
|
||||
vli_type count;
|
||||
|
||||
/*
|
||||
* Hash calculated from the Records (matches block.hash in
|
||||
* valid files).
|
||||
*/
|
||||
struct xz_dec_hash hash;
|
||||
} index;
|
||||
|
||||
/*
|
||||
* Temporary buffer needed to hold Stream Header, Block Header,
|
||||
* and Stream Footer. The Block Header is the biggest (1 KiB)
|
||||
* so we reserve space according to that. buf[] has to be aligned
|
||||
* to a multiple of four bytes; the size_t variables before it
|
||||
* should guarantee this.
|
||||
*/
|
||||
struct
|
||||
{
|
||||
size_t pos;
|
||||
size_t size;
|
||||
uint8_t buf[1024];
|
||||
} temp;
|
||||
|
||||
struct xz_dec_lzma2 *lzma2;
|
||||
|
||||
#ifdef XZ_DEC_BCJ
|
||||
struct xz_dec_bcj *bcj;
|
||||
bool bcj_active;
|
||||
#endif
|
||||
};
|
||||
|
||||
#ifdef XZ_DEC_ANY_CHECK
|
||||
/* Sizes of the Check field with different Check IDs */
|
||||
static const uint8_t check_sizes[16] = {0, 4, 4, 4, 8, 8, 8, 16,
|
||||
16, 16, 32, 32, 32, 64, 64, 64};
|
||||
#endif
|
||||
|
||||
/*
|
||||
* Fill s->temp by copying data starting from b->in[b->in_pos]. Caller
|
||||
* must have set s->temp.pos to indicate how much data we are supposed
|
||||
* to copy into s->temp.buf. Return true once s->temp.pos has reached
|
||||
* s->temp.size.
|
||||
*/
|
||||
static bool fill_temp(struct xz_dec *s, struct xz_buf *b)
|
||||
{
|
||||
size_t copy_size = min_t(size_t, b->in_size - b->in_pos, s->temp.size - s->temp.pos);
|
||||
|
||||
memcpy(s->temp.buf + s->temp.pos, b->in + b->in_pos, copy_size);
|
||||
b->in_pos += copy_size;
|
||||
s->temp.pos += copy_size;
|
||||
|
||||
if (s->temp.pos == s->temp.size)
|
||||
{
|
||||
s->temp.pos = 0;
|
||||
return true;
|
||||
}
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
/* Decode a variable-length integer (little-endian base-128 encoding) */
|
||||
static enum xz_ret dec_vli(struct xz_dec *s, const uint8_t *in, size_t *in_pos, size_t in_size)
|
||||
{
|
||||
uint8_t byte;
|
||||
|
||||
if (s->pos == 0)
|
||||
s->vli = 0;
|
||||
|
||||
while (*in_pos < in_size)
|
||||
{
|
||||
byte = in[*in_pos];
|
||||
++*in_pos;
|
||||
|
||||
s->vli |= (vli_type)(byte & 0x7F) << s->pos;
|
||||
|
||||
if ((byte & 0x80) == 0)
|
||||
{
|
||||
/* Don't allow non-minimal encodings. */
|
||||
if (byte == 0 && s->pos != 0)
|
||||
return XZ_DATA_ERROR;
|
||||
|
||||
s->pos = 0;
|
||||
return XZ_STREAM_END;
|
||||
}
|
||||
|
||||
s->pos += 7;
|
||||
if (s->pos == 7 * VLI_BYTES_MAX)
|
||||
return XZ_DATA_ERROR;
|
||||
}
|
||||
|
||||
return XZ_OK;
|
||||
}
|
||||
|
||||
/*
|
||||
* Decode the Compressed Data field from a Block. Update and validate
|
||||
* the observed compressed and uncompressed sizes of the Block so that
|
||||
* they don't exceed the values possibly stored in the Block Header
|
||||
* (validation assumes that no integer overflow occurs, since vli_type
|
||||
* is normally uint64_t). Update the CRC32 or CRC64 value if presence of
|
||||
* the CRC32 or CRC64 field was indicated in Stream Header.
|
||||
*
|
||||
* Once the decoding is finished, validate that the observed sizes match
|
||||
* the sizes possibly stored in the Block Header. Update the hash and
|
||||
* Block count, which are later used to validate the Index field.
|
||||
*/
|
||||
static enum xz_ret dec_block(struct xz_dec *s, struct xz_buf *b)
|
||||
{
|
||||
enum xz_ret ret;
|
||||
|
||||
s->in_start = b->in_pos;
|
||||
s->out_start = b->out_pos;
|
||||
|
||||
#ifdef XZ_DEC_BCJ
|
||||
if (s->bcj_active)
|
||||
ret = xz_dec_bcj_run(s->bcj, s->lzma2, b);
|
||||
else
|
||||
#endif
|
||||
ret = xz_dec_lzma2_run(s->lzma2, b);
|
||||
|
||||
s->block.compressed += b->in_pos - s->in_start;
|
||||
s->block.uncompressed += b->out_pos - s->out_start;
|
||||
|
||||
/*
|
||||
* There is no need to separately check for VLI_UNKNOWN, since
|
||||
* the observed sizes are always smaller than VLI_UNKNOWN.
|
||||
*/
|
||||
if (s->block.compressed > s->block_header.compressed ||
|
||||
s->block.uncompressed > s->block_header.uncompressed)
|
||||
return XZ_DATA_ERROR;
|
||||
|
||||
if (s->check_type == XZ_CHECK_CRC32)
|
||||
s->crc = xz_crc32(b->out + s->out_start, b->out_pos - s->out_start, s->crc);
|
||||
#ifdef XZ_USE_CRC64
|
||||
else if (s->check_type == XZ_CHECK_CRC64)
|
||||
s->crc = xz_crc64(b->out + s->out_start, b->out_pos - s->out_start, s->crc);
|
||||
#endif
|
||||
|
||||
if (ret == XZ_STREAM_END)
|
||||
{
|
||||
if (s->block_header.compressed != VLI_UNKNOWN &&
|
||||
s->block_header.compressed != s->block.compressed)
|
||||
return XZ_DATA_ERROR;
|
||||
|
||||
if (s->block_header.uncompressed != VLI_UNKNOWN &&
|
||||
s->block_header.uncompressed != s->block.uncompressed)
|
||||
return XZ_DATA_ERROR;
|
||||
|
||||
s->block.hash.unpadded += s->block_header.size + s->block.compressed;
|
||||
|
||||
#ifdef XZ_DEC_ANY_CHECK
|
||||
s->block.hash.unpadded += check_sizes[s->check_type];
|
||||
#else
|
||||
if (s->check_type == XZ_CHECK_CRC32)
|
||||
s->block.hash.unpadded += 4;
|
||||
else if (IS_CRC64(s->check_type))
|
||||
s->block.hash.unpadded += 8;
|
||||
#endif
|
||||
|
||||
s->block.hash.uncompressed += s->block.uncompressed;
|
||||
s->block.hash.crc32 = xz_crc32((const uint8_t *)&s->block.hash, sizeof(s->block.hash),
|
||||
s->block.hash.crc32);
|
||||
|
||||
++s->block.count;
|
||||
}
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
/* Update the Index size and the CRC32 value. */
|
||||
static void index_update(struct xz_dec *s, const struct xz_buf *b)
|
||||
{
|
||||
size_t in_used = b->in_pos - s->in_start;
|
||||
s->index.size += in_used;
|
||||
s->crc = xz_crc32(b->in + s->in_start, in_used, s->crc);
|
||||
}
|
||||
|
||||
/*
|
||||
* Decode the Number of Records, Unpadded Size, and Uncompressed Size
|
||||
* fields from the Index field. That is, Index Padding and CRC32 are not
|
||||
* decoded by this function.
|
||||
*
|
||||
* This can return XZ_OK (more input needed), XZ_STREAM_END (everything
|
||||
* successfully decoded), or XZ_DATA_ERROR (input is corrupt).
|
||||
*/
|
||||
static enum xz_ret dec_index(struct xz_dec *s, struct xz_buf *b)
|
||||
{
|
||||
enum xz_ret ret;
|
||||
|
||||
do
|
||||
{
|
||||
ret = dec_vli(s, b->in, &b->in_pos, b->in_size);
|
||||
if (ret != XZ_STREAM_END)
|
||||
{
|
||||
index_update(s, b);
|
||||
return ret;
|
||||
}
|
||||
|
||||
switch (s->index.sequence)
|
||||
{
|
||||
case SEQ_INDEX_COUNT:
|
||||
s->index.count = s->vli;
|
||||
|
||||
/*
|
||||
* Validate that the Number of Records field
|
||||
* indicates the same number of Records as
|
||||
* there were Blocks in the Stream.
|
||||
*/
|
||||
if (s->index.count != s->block.count)
|
||||
return XZ_DATA_ERROR;
|
||||
|
||||
s->index.sequence = SEQ_INDEX_UNPADDED;
|
||||
break;
|
||||
|
||||
case SEQ_INDEX_UNPADDED:
|
||||
s->index.hash.unpadded += s->vli;
|
||||
s->index.sequence = SEQ_INDEX_UNCOMPRESSED;
|
||||
break;
|
||||
|
||||
case SEQ_INDEX_UNCOMPRESSED:
|
||||
s->index.hash.uncompressed += s->vli;
|
||||
s->index.hash.crc32 = xz_crc32((const uint8_t *)&s->index.hash,
|
||||
sizeof(s->index.hash), s->index.hash.crc32);
|
||||
--s->index.count;
|
||||
s->index.sequence = SEQ_INDEX_UNPADDED;
|
||||
break;
|
||||
}
|
||||
} while (s->index.count > 0);
|
||||
|
||||
return XZ_STREAM_END;
|
||||
}
|
||||
|
||||
/*
|
||||
* Validate that the next four or eight input bytes match the value
|
||||
* of s->crc. s->pos must be zero when starting to validate the first byte.
|
||||
* The "bits" argument allows using the same code for both CRC32 and CRC64.
|
||||
*/
|
||||
static enum xz_ret crc_validate(struct xz_dec *s, struct xz_buf *b, uint32_t bits)
|
||||
{
|
||||
do
|
||||
{
|
||||
if (b->in_pos == b->in_size)
|
||||
return XZ_OK;
|
||||
|
||||
if (((s->crc >> s->pos) & 0xFF) != b->in[b->in_pos++])
|
||||
return XZ_DATA_ERROR;
|
||||
|
||||
s->pos += 8;
|
||||
|
||||
} while (s->pos < bits);
|
||||
|
||||
s->crc = 0;
|
||||
s->pos = 0;
|
||||
|
||||
return XZ_STREAM_END;
|
||||
}
|
||||
|
||||
#ifdef XZ_DEC_ANY_CHECK
|
||||
/*
|
||||
* Skip over the Check field when the Check ID is not supported.
|
||||
* Returns true once the whole Check field has been skipped over.
|
||||
*/
|
||||
static bool check_skip(struct xz_dec *s, struct xz_buf *b)
|
||||
{
|
||||
while (s->pos < check_sizes[s->check_type])
|
||||
{
|
||||
if (b->in_pos == b->in_size)
|
||||
return false;
|
||||
|
||||
++b->in_pos;
|
||||
++s->pos;
|
||||
}
|
||||
|
||||
s->pos = 0;
|
||||
|
||||
return true;
|
||||
}
|
||||
#endif
|
||||
|
||||
/* Decode the Stream Header field (the first 12 bytes of the .xz Stream). */
|
||||
static enum xz_ret dec_stream_header(struct xz_dec *s)
|
||||
{
|
||||
if (!memeq(s->temp.buf, HEADER_MAGIC, HEADER_MAGIC_SIZE))
|
||||
return XZ_FORMAT_ERROR;
|
||||
|
||||
if (xz_crc32(s->temp.buf + HEADER_MAGIC_SIZE, 2, 0) !=
|
||||
get_le32(s->temp.buf + HEADER_MAGIC_SIZE + 2))
|
||||
return XZ_DATA_ERROR;
|
||||
|
||||
if (s->temp.buf[HEADER_MAGIC_SIZE] != 0)
|
||||
return XZ_OPTIONS_ERROR;
|
||||
|
||||
/*
|
||||
* Of integrity checks, we support none (Check ID = 0),
|
||||
* CRC32 (Check ID = 1), and optionally CRC64 (Check ID = 4).
|
||||
* However, if XZ_DEC_ANY_CHECK is defined, we will accept other
|
||||
* check types too, but then the check won't be verified and
|
||||
* a warning (XZ_UNSUPPORTED_CHECK) will be given.
|
||||
*/
|
||||
s->check_type = s->temp.buf[HEADER_MAGIC_SIZE + 1];
|
||||
|
||||
#ifdef XZ_DEC_ANY_CHECK
|
||||
if (s->check_type > XZ_CHECK_MAX)
|
||||
return XZ_OPTIONS_ERROR;
|
||||
|
||||
if (s->check_type > XZ_CHECK_CRC32 && !IS_CRC64(s->check_type))
|
||||
return XZ_UNSUPPORTED_CHECK;
|
||||
#else
|
||||
if (s->check_type > XZ_CHECK_CRC32 && !IS_CRC64(s->check_type))
|
||||
return XZ_OPTIONS_ERROR;
|
||||
#endif
|
||||
|
||||
return XZ_OK;
|
||||
}
|
||||
|
||||
/* Decode the Stream Footer field (the last 12 bytes of the .xz Stream) */
|
||||
static enum xz_ret dec_stream_footer(struct xz_dec *s)
|
||||
{
|
||||
if (!memeq(s->temp.buf + 10, FOOTER_MAGIC, FOOTER_MAGIC_SIZE))
|
||||
return XZ_DATA_ERROR;
|
||||
|
||||
if (xz_crc32(s->temp.buf + 4, 6, 0) != get_le32(s->temp.buf))
|
||||
return XZ_DATA_ERROR;
|
||||
|
||||
/*
|
||||
* Validate Backward Size. Note that we never added the size of the
|
||||
* Index CRC32 field to s->index.size, thus we use s->index.size / 4
|
||||
* instead of s->index.size / 4 - 1.
|
||||
*/
|
||||
if ((s->index.size >> 2) != get_le32(s->temp.buf + 4))
|
||||
return XZ_DATA_ERROR;
|
||||
|
||||
if (s->temp.buf[8] != 0 || s->temp.buf[9] != s->check_type)
|
||||
return XZ_DATA_ERROR;
|
||||
|
||||
/*
|
||||
* Use XZ_STREAM_END instead of XZ_OK to be more convenient
|
||||
* for the caller.
|
||||
*/
|
||||
return XZ_STREAM_END;
|
||||
}
|
||||
|
||||
/* Decode the Block Header and initialize the filter chain. */
|
||||
static enum xz_ret dec_block_header(struct xz_dec *s)
|
||||
{
|
||||
enum xz_ret ret;
|
||||
|
||||
/*
|
||||
* Validate the CRC32. We know that the temp buffer is at least
|
||||
* eight bytes so this is safe.
|
||||
*/
|
||||
s->temp.size -= 4;
|
||||
if (xz_crc32(s->temp.buf, s->temp.size, 0) != get_le32(s->temp.buf + s->temp.size))
|
||||
return XZ_DATA_ERROR;
|
||||
|
||||
s->temp.pos = 2;
|
||||
|
||||
/*
|
||||
* Catch unsupported Block Flags. We support only one or two filters
|
||||
* in the chain, so we catch that with the same test.
|
||||
*/
|
||||
#ifdef XZ_DEC_BCJ
|
||||
if (s->temp.buf[1] & 0x3E)
|
||||
#else
|
||||
if (s->temp.buf[1] & 0x3F)
|
||||
#endif
|
||||
return XZ_OPTIONS_ERROR;
|
||||
|
||||
/* Compressed Size */
|
||||
if (s->temp.buf[1] & 0x40)
|
||||
{
|
||||
if (dec_vli(s, s->temp.buf, &s->temp.pos, s->temp.size) != XZ_STREAM_END)
|
||||
return XZ_DATA_ERROR;
|
||||
|
||||
s->block_header.compressed = s->vli;
|
||||
}
|
||||
else
|
||||
{
|
||||
s->block_header.compressed = VLI_UNKNOWN;
|
||||
}
|
||||
|
||||
/* Uncompressed Size */
|
||||
if (s->temp.buf[1] & 0x80)
|
||||
{
|
||||
if (dec_vli(s, s->temp.buf, &s->temp.pos, s->temp.size) != XZ_STREAM_END)
|
||||
return XZ_DATA_ERROR;
|
||||
|
||||
s->block_header.uncompressed = s->vli;
|
||||
}
|
||||
else
|
||||
{
|
||||
s->block_header.uncompressed = VLI_UNKNOWN;
|
||||
}
|
||||
|
||||
#ifdef XZ_DEC_BCJ
|
||||
/* If there are two filters, the first one must be a BCJ filter. */
|
||||
s->bcj_active = s->temp.buf[1] & 0x01;
|
||||
if (s->bcj_active)
|
||||
{
|
||||
if (s->temp.size - s->temp.pos < 2)
|
||||
return XZ_OPTIONS_ERROR;
|
||||
|
||||
ret = xz_dec_bcj_reset(s->bcj, s->temp.buf[s->temp.pos++]);
|
||||
if (ret != XZ_OK)
|
||||
return ret;
|
||||
|
||||
/*
|
||||
* We don't support custom start offset,
|
||||
* so Size of Properties must be zero.
|
||||
*/
|
||||
if (s->temp.buf[s->temp.pos++] != 0x00)
|
||||
return XZ_OPTIONS_ERROR;
|
||||
}
|
||||
#endif
|
||||
|
||||
/* Valid Filter Flags always take at least two bytes. */
|
||||
if (s->temp.size - s->temp.pos < 2)
|
||||
return XZ_DATA_ERROR;
|
||||
|
||||
/* Filter ID = LZMA2 */
|
||||
if (s->temp.buf[s->temp.pos++] != 0x21)
|
||||
return XZ_OPTIONS_ERROR;
|
||||
|
||||
/* Size of Properties = 1-byte Filter Properties */
|
||||
if (s->temp.buf[s->temp.pos++] != 0x01)
|
||||
return XZ_OPTIONS_ERROR;
|
||||
|
||||
/* Filter Properties contains LZMA2 dictionary size. */
|
||||
if (s->temp.size - s->temp.pos < 1)
|
||||
return XZ_DATA_ERROR;
|
||||
|
||||
ret = xz_dec_lzma2_reset(s->lzma2, s->temp.buf[s->temp.pos++]);
|
||||
if (ret != XZ_OK)
|
||||
return ret;
|
||||
|
||||
/* The rest must be Header Padding. */
|
||||
while (s->temp.pos < s->temp.size)
|
||||
if (s->temp.buf[s->temp.pos++] != 0x00)
|
||||
return XZ_OPTIONS_ERROR;
|
||||
|
||||
s->temp.pos = 0;
|
||||
s->block.compressed = 0;
|
||||
s->block.uncompressed = 0;
|
||||
|
||||
return XZ_OK;
|
||||
}
|
||||
|
||||
static enum xz_ret dec_main(struct xz_dec *s, struct xz_buf *b)
|
||||
{
|
||||
enum xz_ret ret;
|
||||
|
||||
/*
|
||||
* Store the start position for the case when we are in the middle
|
||||
* of the Index field.
|
||||
*/
|
||||
s->in_start = b->in_pos;
|
||||
|
||||
while (true)
|
||||
{
|
||||
switch (s->sequence)
|
||||
{
|
||||
case SEQ_STREAM_HEADER:
|
||||
/*
|
||||
* Stream Header is copied to s->temp, and then
|
||||
* decoded from there. This way if the caller
|
||||
* gives us only little input at a time, we can
|
||||
* still keep the Stream Header decoding code
|
||||
* simple. Similar approach is used in many places
|
||||
* in this file.
|
||||
*/
|
||||
if (!fill_temp(s, b))
|
||||
return XZ_OK;
|
||||
|
||||
/*
|
||||
* If dec_stream_header() returns
|
||||
* XZ_UNSUPPORTED_CHECK, it is still possible
|
||||
* to continue decoding if working in multi-call
|
||||
* mode. Thus, update s->sequence before calling
|
||||
* dec_stream_header().
|
||||
*/
|
||||
s->sequence = SEQ_BLOCK_START;
|
||||
|
||||
ret = dec_stream_header(s);
|
||||
if (ret != XZ_OK)
|
||||
return ret;
|
||||
|
||||
case SEQ_BLOCK_START:
|
||||
/* We need one byte of input to continue. */
|
||||
if (b->in_pos == b->in_size)
|
||||
return XZ_OK;
|
||||
|
||||
/* See if this is the beginning of the Index field. */
|
||||
if (b->in[b->in_pos] == 0)
|
||||
{
|
||||
s->in_start = b->in_pos++;
|
||||
s->sequence = SEQ_INDEX;
|
||||
break;
|
||||
}
|
||||
|
||||
/*
|
||||
* Calculate the size of the Block Header and
|
||||
* prepare to decode it.
|
||||
*/
|
||||
s->block_header.size = ((uint32_t)b->in[b->in_pos] + 1) * 4;
|
||||
|
||||
s->temp.size = s->block_header.size;
|
||||
s->temp.pos = 0;
|
||||
s->sequence = SEQ_BLOCK_HEADER;
|
||||
|
||||
case SEQ_BLOCK_HEADER:
|
||||
if (!fill_temp(s, b))
|
||||
return XZ_OK;
|
||||
|
||||
ret = dec_block_header(s);
|
||||
if (ret != XZ_OK)
|
||||
return ret;
|
||||
|
||||
s->sequence = SEQ_BLOCK_UNCOMPRESS;
|
||||
|
||||
case SEQ_BLOCK_UNCOMPRESS:
|
||||
ret = dec_block(s, b);
|
||||
if (ret != XZ_STREAM_END)
|
||||
return ret;
|
||||
|
||||
s->sequence = SEQ_BLOCK_PADDING;
|
||||
|
||||
case SEQ_BLOCK_PADDING:
|
||||
/*
|
||||
* Size of Compressed Data + Block Padding
|
||||
* must be a multiple of four. We don't need
|
||||
* s->block.compressed for anything else
|
||||
* anymore, so we use it here to test the size
|
||||
* of the Block Padding field.
|
||||
*/
|
||||
while (s->block.compressed & 3)
|
||||
{
|
||||
if (b->in_pos == b->in_size)
|
||||
return XZ_OK;
|
||||
|
||||
if (b->in[b->in_pos++] != 0)
|
||||
return XZ_DATA_ERROR;
|
||||
|
||||
++s->block.compressed;
|
||||
}
|
||||
|
||||
s->sequence = SEQ_BLOCK_CHECK;
|
||||
|
||||
case SEQ_BLOCK_CHECK:
|
||||
if (s->check_type == XZ_CHECK_CRC32)
|
||||
{
|
||||
ret = crc_validate(s, b, 32);
|
||||
if (ret != XZ_STREAM_END)
|
||||
return ret;
|
||||
}
|
||||
else if (IS_CRC64(s->check_type))
|
||||
{
|
||||
ret = crc_validate(s, b, 64);
|
||||
if (ret != XZ_STREAM_END)
|
||||
return ret;
|
||||
}
|
||||
#ifdef XZ_DEC_ANY_CHECK
|
||||
else if (!check_skip(s, b))
|
||||
{
|
||||
return XZ_OK;
|
||||
}
|
||||
#endif
|
||||
|
||||
s->sequence = SEQ_BLOCK_START;
|
||||
break;
|
||||
|
||||
case SEQ_INDEX:
|
||||
ret = dec_index(s, b);
|
||||
if (ret != XZ_STREAM_END)
|
||||
return ret;
|
||||
|
||||
s->sequence = SEQ_INDEX_PADDING;
|
||||
|
||||
case SEQ_INDEX_PADDING:
|
||||
while ((s->index.size + (b->in_pos - s->in_start)) & 3)
|
||||
{
|
||||
if (b->in_pos == b->in_size)
|
||||
{
|
||||
index_update(s, b);
|
||||
return XZ_OK;
|
||||
}
|
||||
|
||||
if (b->in[b->in_pos++] != 0)
|
||||
return XZ_DATA_ERROR;
|
||||
}
|
||||
|
||||
/* Finish the CRC32 value and Index size. */
|
||||
index_update(s, b);
|
||||
|
||||
/* Compare the hashes to validate the Index field. */
|
||||
if (!memeq(&s->block.hash, &s->index.hash, sizeof(s->block.hash)))
|
||||
return XZ_DATA_ERROR;
|
||||
|
||||
s->sequence = SEQ_INDEX_CRC32;
|
||||
|
||||
case SEQ_INDEX_CRC32:
|
||||
ret = crc_validate(s, b, 32);
|
||||
if (ret != XZ_STREAM_END)
|
||||
return ret;
|
||||
|
||||
s->temp.size = STREAM_HEADER_SIZE;
|
||||
s->sequence = SEQ_STREAM_FOOTER;
|
||||
|
||||
case SEQ_STREAM_FOOTER:
|
||||
if (!fill_temp(s, b))
|
||||
return XZ_OK;
|
||||
|
||||
return dec_stream_footer(s);
|
||||
}
|
||||
}
|
||||
|
||||
/* Never reached */
|
||||
}
|
||||
|
||||
/*
|
||||
* xz_dec_run() is a wrapper for dec_main() to handle some special cases in
|
||||
* multi-call and single-call decoding.
|
||||
*
|
||||
* In multi-call mode, we must return XZ_BUF_ERROR when it seems clear that we
|
||||
* are not going to make any progress anymore. This is to prevent the caller
|
||||
* from calling us infinitely when the input file is truncated or otherwise
|
||||
* corrupt. Since zlib-style API allows that the caller fills the input buffer
|
||||
* only when the decoder doesn't produce any new output, we have to be careful
|
||||
* to avoid returning XZ_BUF_ERROR too easily: XZ_BUF_ERROR is returned only
|
||||
* after the second consecutive call to xz_dec_run() that makes no progress.
|
||||
*
|
||||
* In single-call mode, if we couldn't decode everything and no error
|
||||
* occurred, either the input is truncated or the output buffer is too small.
|
||||
* Since we know that the last input byte never produces any output, we know
|
||||
* that if all the input was consumed and decoding wasn't finished, the file
|
||||
* must be corrupt. Otherwise the output buffer has to be too small or the
|
||||
* file is corrupt in a way that decoding it produces too big output.
|
||||
*
|
||||
* If single-call decoding fails, we reset b->in_pos and b->out_pos back to
|
||||
* their original values. This is because with some filter chains there won't
|
||||
* be any valid uncompressed data in the output buffer unless the decoding
|
||||
* actually succeeds (that's the price to pay of using the output buffer as
|
||||
* the workspace).
|
||||
*/
|
||||
XZ_EXTERN enum xz_ret xz_dec_run(struct xz_dec *s, struct xz_buf *b)
|
||||
{
|
||||
size_t in_start;
|
||||
size_t out_start;
|
||||
enum xz_ret ret;
|
||||
|
||||
if (DEC_IS_SINGLE(s->mode))
|
||||
xz_dec_reset(s);
|
||||
|
||||
in_start = b->in_pos;
|
||||
out_start = b->out_pos;
|
||||
ret = dec_main(s, b);
|
||||
|
||||
if (DEC_IS_SINGLE(s->mode))
|
||||
{
|
||||
if (ret == XZ_OK)
|
||||
ret = b->in_pos == b->in_size ? XZ_DATA_ERROR : XZ_BUF_ERROR;
|
||||
|
||||
if (ret != XZ_STREAM_END)
|
||||
{
|
||||
b->in_pos = in_start;
|
||||
b->out_pos = out_start;
|
||||
}
|
||||
}
|
||||
else if (ret == XZ_OK && in_start == b->in_pos && out_start == b->out_pos)
|
||||
{
|
||||
if (s->allow_buf_error)
|
||||
ret = XZ_BUF_ERROR;
|
||||
|
||||
s->allow_buf_error = true;
|
||||
}
|
||||
else
|
||||
{
|
||||
s->allow_buf_error = false;
|
||||
}
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
XZ_EXTERN struct xz_dec *xz_dec_init(enum xz_mode mode, uint32_t dict_max)
|
||||
{
|
||||
struct xz_dec *s = kmalloc(sizeof(*s), GFP_KERNEL);
|
||||
if (s == NULL)
|
||||
return NULL;
|
||||
|
||||
s->mode = mode;
|
||||
|
||||
#ifdef XZ_DEC_BCJ
|
||||
s->bcj = xz_dec_bcj_create(DEC_IS_SINGLE(mode));
|
||||
if (s->bcj == NULL)
|
||||
goto error_bcj;
|
||||
#endif
|
||||
|
||||
s->lzma2 = xz_dec_lzma2_create(mode, dict_max);
|
||||
if (s->lzma2 == NULL)
|
||||
goto error_lzma2;
|
||||
|
||||
xz_dec_reset(s);
|
||||
return s;
|
||||
|
||||
error_lzma2:
|
||||
#ifdef XZ_DEC_BCJ
|
||||
xz_dec_bcj_end(s->bcj);
|
||||
error_bcj:
|
||||
#endif
|
||||
kfree(s);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
XZ_EXTERN void xz_dec_reset(struct xz_dec *s)
|
||||
{
|
||||
s->sequence = SEQ_STREAM_HEADER;
|
||||
s->allow_buf_error = false;
|
||||
s->pos = 0;
|
||||
s->crc = 0;
|
||||
memzero(&s->block, sizeof(s->block));
|
||||
memzero(&s->index, sizeof(s->index));
|
||||
s->temp.pos = 0;
|
||||
s->temp.size = STREAM_HEADER_SIZE;
|
||||
}
|
||||
|
||||
XZ_EXTERN void xz_dec_end(struct xz_dec *s)
|
||||
{
|
||||
if (s != NULL)
|
||||
{
|
||||
xz_dec_lzma2_end(s->lzma2);
|
||||
#ifdef XZ_DEC_BCJ
|
||||
xz_dec_bcj_end(s->bcj);
|
||||
#endif
|
||||
kfree(s);
|
||||
}
|
||||
}
|
@ -1,204 +0,0 @@
|
||||
/*
|
||||
* LZMA2 definitions
|
||||
*
|
||||
* Authors: Lasse Collin <lasse.collin@tukaani.org>
|
||||
* Igor Pavlov <http://7-zip.org/>
|
||||
*
|
||||
* This file has been put into the public domain.
|
||||
* You can do whatever you want with this file.
|
||||
*/
|
||||
|
||||
#ifndef XZ_LZMA2_H
|
||||
#define XZ_LZMA2_H
|
||||
|
||||
/* Range coder constants */
|
||||
#define RC_SHIFT_BITS 8
|
||||
#define RC_TOP_BITS 24
|
||||
#define RC_TOP_VALUE (1 << RC_TOP_BITS)
|
||||
#define RC_BIT_MODEL_TOTAL_BITS 11
|
||||
#define RC_BIT_MODEL_TOTAL (1 << RC_BIT_MODEL_TOTAL_BITS)
|
||||
#define RC_MOVE_BITS 5
|
||||
|
||||
/*
|
||||
* Maximum number of position states. A position state is the lowest pb
|
||||
* number of bits of the current uncompressed offset. In some places there
|
||||
* are different sets of probabilities for different position states.
|
||||
*/
|
||||
#define POS_STATES_MAX (1 << 4)
|
||||
|
||||
/*
|
||||
* This enum is used to track which LZMA symbols have occurred most recently
|
||||
* and in which order. This information is used to predict the next symbol.
|
||||
*
|
||||
* Symbols:
|
||||
* - Literal: One 8-bit byte
|
||||
* - Match: Repeat a chunk of data at some distance
|
||||
* - Long repeat: Multi-byte match at a recently seen distance
|
||||
* - Short repeat: One-byte repeat at a recently seen distance
|
||||
*
|
||||
* The symbol names are in from STATE_oldest_older_previous. REP means
|
||||
* either short or long repeated match, and NONLIT means any non-literal.
|
||||
*/
|
||||
enum lzma_state
|
||||
{
|
||||
STATE_LIT_LIT,
|
||||
STATE_MATCH_LIT_LIT,
|
||||
STATE_REP_LIT_LIT,
|
||||
STATE_SHORTREP_LIT_LIT,
|
||||
STATE_MATCH_LIT,
|
||||
STATE_REP_LIT,
|
||||
STATE_SHORTREP_LIT,
|
||||
STATE_LIT_MATCH,
|
||||
STATE_LIT_LONGREP,
|
||||
STATE_LIT_SHORTREP,
|
||||
STATE_NONLIT_MATCH,
|
||||
STATE_NONLIT_REP
|
||||
};
|
||||
|
||||
/* Total number of states */
|
||||
#define STATES 12
|
||||
|
||||
/* The lowest 7 states indicate that the previous state was a literal. */
|
||||
#define LIT_STATES 7
|
||||
|
||||
/* Indicate that the latest symbol was a literal. */
|
||||
static inline void lzma_state_literal(enum lzma_state *state)
|
||||
{
|
||||
if (*state <= STATE_SHORTREP_LIT_LIT)
|
||||
*state = STATE_LIT_LIT;
|
||||
else if (*state <= STATE_LIT_SHORTREP)
|
||||
*state -= 3;
|
||||
else
|
||||
*state -= 6;
|
||||
}
|
||||
|
||||
/* Indicate that the latest symbol was a match. */
|
||||
static inline void lzma_state_match(enum lzma_state *state)
|
||||
{
|
||||
*state = *state < LIT_STATES ? STATE_LIT_MATCH : STATE_NONLIT_MATCH;
|
||||
}
|
||||
|
||||
/* Indicate that the latest state was a long repeated match. */
|
||||
static inline void lzma_state_long_rep(enum lzma_state *state)
|
||||
{
|
||||
*state = *state < LIT_STATES ? STATE_LIT_LONGREP : STATE_NONLIT_REP;
|
||||
}
|
||||
|
||||
/* Indicate that the latest symbol was a short match. */
|
||||
static inline void lzma_state_short_rep(enum lzma_state *state)
|
||||
{
|
||||
*state = *state < LIT_STATES ? STATE_LIT_SHORTREP : STATE_NONLIT_REP;
|
||||
}
|
||||
|
||||
/* Test if the previous symbol was a literal. */
|
||||
static inline bool lzma_state_is_literal(enum lzma_state state)
|
||||
{
|
||||
return state < LIT_STATES;
|
||||
}
|
||||
|
||||
/* Each literal coder is divided in three sections:
|
||||
* - 0x001-0x0FF: Without match byte
|
||||
* - 0x101-0x1FF: With match byte; match bit is 0
|
||||
* - 0x201-0x2FF: With match byte; match bit is 1
|
||||
*
|
||||
* Match byte is used when the previous LZMA symbol was something else than
|
||||
* a literal (that is, it was some kind of match).
|
||||
*/
|
||||
#define LITERAL_CODER_SIZE 0x300
|
||||
|
||||
/* Maximum number of literal coders */
|
||||
#define LITERAL_CODERS_MAX (1 << 4)
|
||||
|
||||
/* Minimum length of a match is two bytes. */
|
||||
#define MATCH_LEN_MIN 2
|
||||
|
||||
/* Match length is encoded with 4, 5, or 10 bits.
|
||||
*
|
||||
* Length Bits
|
||||
* 2-9 4 = Choice=0 + 3 bits
|
||||
* 10-17 5 = Choice=1 + Choice2=0 + 3 bits
|
||||
* 18-273 10 = Choice=1 + Choice2=1 + 8 bits
|
||||
*/
|
||||
#define LEN_LOW_BITS 3
|
||||
#define LEN_LOW_SYMBOLS (1 << LEN_LOW_BITS)
|
||||
#define LEN_MID_BITS 3
|
||||
#define LEN_MID_SYMBOLS (1 << LEN_MID_BITS)
|
||||
#define LEN_HIGH_BITS 8
|
||||
#define LEN_HIGH_SYMBOLS (1 << LEN_HIGH_BITS)
|
||||
#define LEN_SYMBOLS (LEN_LOW_SYMBOLS + LEN_MID_SYMBOLS + LEN_HIGH_SYMBOLS)
|
||||
|
||||
/*
|
||||
* Maximum length of a match is 273 which is a result of the encoding
|
||||
* described above.
|
||||
*/
|
||||
#define MATCH_LEN_MAX (MATCH_LEN_MIN + LEN_SYMBOLS - 1)
|
||||
|
||||
/*
|
||||
* Different sets of probabilities are used for match distances that have
|
||||
* very short match length: Lengths of 2, 3, and 4 bytes have a separate
|
||||
* set of probabilities for each length. The matches with longer length
|
||||
* use a shared set of probabilities.
|
||||
*/
|
||||
#define DIST_STATES 4
|
||||
|
||||
/*
|
||||
* Get the index of the appropriate probability array for decoding
|
||||
* the distance slot.
|
||||
*/
|
||||
static inline uint32_t lzma_get_dist_state(uint32_t len)
|
||||
{
|
||||
return len < DIST_STATES + MATCH_LEN_MIN ? len - MATCH_LEN_MIN : DIST_STATES - 1;
|
||||
}
|
||||
|
||||
/*
|
||||
* The highest two bits of a 32-bit match distance are encoded using six bits.
|
||||
* This six-bit value is called a distance slot. This way encoding a 32-bit
|
||||
* value takes 6-36 bits, larger values taking more bits.
|
||||
*/
|
||||
#define DIST_SLOT_BITS 6
|
||||
#define DIST_SLOTS (1 << DIST_SLOT_BITS)
|
||||
|
||||
/* Match distances up to 127 are fully encoded using probabilities. Since
|
||||
* the highest two bits (distance slot) are always encoded using six bits,
|
||||
* the distances 0-3 don't need any additional bits to encode, since the
|
||||
* distance slot itself is the same as the actual distance. DIST_MODEL_START
|
||||
* indicates the first distance slot where at least one additional bit is
|
||||
* needed.
|
||||
*/
|
||||
#define DIST_MODEL_START 4
|
||||
|
||||
/*
|
||||
* Match distances greater than 127 are encoded in three pieces:
|
||||
* - distance slot: the highest two bits
|
||||
* - direct bits: 2-26 bits below the highest two bits
|
||||
* - alignment bits: four lowest bits
|
||||
*
|
||||
* Direct bits don't use any probabilities.
|
||||
*
|
||||
* The distance slot value of 14 is for distances 128-191.
|
||||
*/
|
||||
#define DIST_MODEL_END 14
|
||||
|
||||
/* Distance slots that indicate a distance <= 127. */
|
||||
#define FULL_DISTANCES_BITS (DIST_MODEL_END / 2)
|
||||
#define FULL_DISTANCES (1 << FULL_DISTANCES_BITS)
|
||||
|
||||
/*
|
||||
* For match distances greater than 127, only the highest two bits and the
|
||||
* lowest four bits (alignment) is encoded using probabilities.
|
||||
*/
|
||||
#define ALIGN_BITS 4
|
||||
#define ALIGN_SIZE (1 << ALIGN_BITS)
|
||||
#define ALIGN_MASK (ALIGN_SIZE - 1)
|
||||
|
||||
/* Total number of all probability variables */
|
||||
#define PROBS_TOTAL (1846 + LITERAL_CODERS_MAX *LITERAL_CODER_SIZE)
|
||||
|
||||
/*
|
||||
* LZMA remembers the four most recent match distances. Reusing these
|
||||
* distances tends to take less space than re-encoding the actual
|
||||
* distance value.
|
||||
*/
|
||||
#define REPS 4
|
||||
|
||||
#endif
|
@ -1,150 +0,0 @@
|
||||
/*
|
||||
* Private includes and definitions
|
||||
*
|
||||
* Author: Lasse Collin <lasse.collin@tukaani.org>
|
||||
*
|
||||
* This file has been put into the public domain.
|
||||
* You can do whatever you want with this file.
|
||||
*/
|
||||
|
||||
#ifndef XZ_PRIVATE_H
|
||||
#define XZ_PRIVATE_H
|
||||
|
||||
#ifdef __KERNEL__
|
||||
#include <linux/xz.h>
|
||||
#include <linux/kernel.h>
|
||||
#include <asm/unaligned.h>
|
||||
/* XZ_PREBOOT may be defined only via decompress_unxz.c. */
|
||||
#ifndef XZ_PREBOOT
|
||||
#include <linux/slab.h>
|
||||
#include <linux/vmalloc.h>
|
||||
#include <linux/string.h>
|
||||
#ifdef CONFIG_XZ_DEC_X86
|
||||
#define XZ_DEC_X86
|
||||
#endif
|
||||
#ifdef CONFIG_XZ_DEC_POWERPC
|
||||
#define XZ_DEC_POWERPC
|
||||
#endif
|
||||
#ifdef CONFIG_XZ_DEC_IA64
|
||||
#define XZ_DEC_IA64
|
||||
#endif
|
||||
#ifdef CONFIG_XZ_DEC_ARM
|
||||
#define XZ_DEC_ARM
|
||||
#endif
|
||||
#ifdef CONFIG_XZ_DEC_ARMTHUMB
|
||||
#define XZ_DEC_ARMTHUMB
|
||||
#endif
|
||||
#ifdef CONFIG_XZ_DEC_SPARC
|
||||
#define XZ_DEC_SPARC
|
||||
#endif
|
||||
#define memeq(a, b, size) (memcmp(a, b, size) == 0)
|
||||
#define memzero(buf, size) memset(buf, 0, size)
|
||||
#endif
|
||||
#define get_le32(p) le32_to_cpup((const uint32_t *)(p))
|
||||
#else
|
||||
/*
|
||||
* For userspace builds, use a separate header to define the required
|
||||
* macros and functions. This makes it easier to adapt the code into
|
||||
* different environments and avoids clutter in the Linux kernel tree.
|
||||
*/
|
||||
#include "xz_config.h"
|
||||
#endif
|
||||
|
||||
/* If no specific decoding mode is requested, enable support for all modes. */
|
||||
#if !defined(XZ_DEC_SINGLE) && !defined(XZ_DEC_PREALLOC) && !defined(XZ_DEC_DYNALLOC)
|
||||
#define XZ_DEC_SINGLE
|
||||
#define XZ_DEC_PREALLOC
|
||||
#define XZ_DEC_DYNALLOC
|
||||
#endif
|
||||
|
||||
/*
|
||||
* The DEC_IS_foo(mode) macros are used in "if" statements. If only some
|
||||
* of the supported modes are enabled, these macros will evaluate to true or
|
||||
* false at compile time and thus allow the compiler to omit unneeded code.
|
||||
*/
|
||||
#ifdef XZ_DEC_SINGLE
|
||||
#define DEC_IS_SINGLE(mode) ((mode) == XZ_SINGLE)
|
||||
#else
|
||||
#define DEC_IS_SINGLE(mode) (false)
|
||||
#endif
|
||||
|
||||
#ifdef XZ_DEC_PREALLOC
|
||||
#define DEC_IS_PREALLOC(mode) ((mode) == XZ_PREALLOC)
|
||||
#else
|
||||
#define DEC_IS_PREALLOC(mode) (false)
|
||||
#endif
|
||||
|
||||
#ifdef XZ_DEC_DYNALLOC
|
||||
#define DEC_IS_DYNALLOC(mode) ((mode) == XZ_DYNALLOC)
|
||||
#else
|
||||
#define DEC_IS_DYNALLOC(mode) (false)
|
||||
#endif
|
||||
|
||||
#if !defined(XZ_DEC_SINGLE)
|
||||
#define DEC_IS_MULTI(mode) (true)
|
||||
#elif defined(XZ_DEC_PREALLOC) || defined(XZ_DEC_DYNALLOC)
|
||||
#define DEC_IS_MULTI(mode) ((mode) != XZ_SINGLE)
|
||||
#else
|
||||
#define DEC_IS_MULTI(mode) (false)
|
||||
#endif
|
||||
|
||||
/*
|
||||
* If any of the BCJ filter decoders are wanted, define XZ_DEC_BCJ.
|
||||
* XZ_DEC_BCJ is used to enable generic support for BCJ decoders.
|
||||
*/
|
||||
#ifndef XZ_DEC_BCJ
|
||||
#if defined(XZ_DEC_X86) || defined(XZ_DEC_POWERPC) || defined(XZ_DEC_IA64) || \
|
||||
defined(XZ_DEC_ARM) || defined(XZ_DEC_ARM) || defined(XZ_DEC_ARMTHUMB) || \
|
||||
defined(XZ_DEC_SPARC)
|
||||
#define XZ_DEC_BCJ
|
||||
#endif
|
||||
#endif
|
||||
|
||||
/*
|
||||
* Allocate memory for LZMA2 decoder. xz_dec_lzma2_reset() must be used
|
||||
* before calling xz_dec_lzma2_run().
|
||||
*/
|
||||
XZ_EXTERN struct xz_dec_lzma2 *xz_dec_lzma2_create(enum xz_mode mode, uint32_t dict_max);
|
||||
|
||||
/*
|
||||
* Decode the LZMA2 properties (one byte) and reset the decoder. Return
|
||||
* XZ_OK on success, XZ_MEMLIMIT_ERROR if the preallocated dictionary is not
|
||||
* big enough, and XZ_OPTIONS_ERROR if props indicates something that this
|
||||
* decoder doesn't support.
|
||||
*/
|
||||
XZ_EXTERN enum xz_ret xz_dec_lzma2_reset(struct xz_dec_lzma2 *s, uint8_t props);
|
||||
|
||||
/* Decode raw LZMA2 stream from b->in to b->out. */
|
||||
XZ_EXTERN enum xz_ret xz_dec_lzma2_run(struct xz_dec_lzma2 *s, struct xz_buf *b);
|
||||
|
||||
/* Free the memory allocated for the LZMA2 decoder. */
|
||||
XZ_EXTERN void xz_dec_lzma2_end(struct xz_dec_lzma2 *s);
|
||||
|
||||
#ifdef XZ_DEC_BCJ
|
||||
/*
|
||||
* Allocate memory for BCJ decoders. xz_dec_bcj_reset() must be used before
|
||||
* calling xz_dec_bcj_run().
|
||||
*/
|
||||
XZ_EXTERN struct xz_dec_bcj *xz_dec_bcj_create(bool single_call);
|
||||
|
||||
/*
|
||||
* Decode the Filter ID of a BCJ filter. This implementation doesn't
|
||||
* support custom start offsets, so no decoding of Filter Properties
|
||||
* is needed. Returns XZ_OK if the given Filter ID is supported.
|
||||
* Otherwise XZ_OPTIONS_ERROR is returned.
|
||||
*/
|
||||
XZ_EXTERN enum xz_ret xz_dec_bcj_reset(struct xz_dec_bcj *s, uint8_t id);
|
||||
|
||||
/*
|
||||
* Decode raw BCJ + LZMA2 stream. This must be used only if there actually is
|
||||
* a BCJ filter in the chain. If the chain has only LZMA2, xz_dec_lzma2_run()
|
||||
* must be called directly.
|
||||
*/
|
||||
XZ_EXTERN enum xz_ret xz_dec_bcj_run(struct xz_dec_bcj *s, struct xz_dec_lzma2 *lzma2,
|
||||
struct xz_buf *b);
|
||||
|
||||
/* Free the memory allocated for the BCJ filters. */
|
||||
#define xz_dec_bcj_end(s) kfree(s)
|
||||
#endif
|
||||
|
||||
#endif
|
@ -1,62 +0,0 @@
|
||||
/*
|
||||
* Definitions for handling the .xz file format
|
||||
*
|
||||
* Author: Lasse Collin <lasse.collin@tukaani.org>
|
||||
*
|
||||
* This file has been put into the public domain.
|
||||
* You can do whatever you want with this file.
|
||||
*/
|
||||
|
||||
#ifndef XZ_STREAM_H
|
||||
#define XZ_STREAM_H
|
||||
|
||||
#if defined(__KERNEL__) && !XZ_INTERNAL_CRC32
|
||||
#include <linux/crc32.h>
|
||||
#undef crc32
|
||||
#define xz_crc32(buf, size, crc) (~crc32_le(~(uint32_t)(crc), buf, size))
|
||||
#endif
|
||||
|
||||
/*
|
||||
* See the .xz file format specification at
|
||||
* http://tukaani.org/xz/xz-file-format.txt
|
||||
* to understand the container format.
|
||||
*/
|
||||
|
||||
#define STREAM_HEADER_SIZE 12
|
||||
|
||||
#define HEADER_MAGIC "\3757zXZ"
|
||||
#define HEADER_MAGIC_SIZE 6
|
||||
|
||||
#define FOOTER_MAGIC "YZ"
|
||||
#define FOOTER_MAGIC_SIZE 2
|
||||
|
||||
/*
|
||||
* Variable-length integer can hold a 63-bit unsigned integer or a special
|
||||
* value indicating that the value is unknown.
|
||||
*
|
||||
* Experimental: vli_type can be defined to uint32_t to save a few bytes
|
||||
* in code size (no effect on speed). Doing so limits the uncompressed and
|
||||
* compressed size of the file to less than 256 MiB and may also weaken
|
||||
* error detection slightly.
|
||||
*/
|
||||
typedef uint64_t vli_type;
|
||||
|
||||
#define VLI_MAX ((vli_type) - 1 / 2)
|
||||
#define VLI_UNKNOWN ((vli_type) - 1)
|
||||
|
||||
/* Maximum encoded size of a VLI */
|
||||
#define VLI_BYTES_MAX (sizeof(vli_type) * 8 / 7)
|
||||
|
||||
/* Integrity Check types */
|
||||
enum xz_check
|
||||
{
|
||||
XZ_CHECK_NONE = 0,
|
||||
XZ_CHECK_CRC32 = 1,
|
||||
XZ_CHECK_CRC64 = 4,
|
||||
XZ_CHECK_SHA256 = 10
|
||||
};
|
||||
|
||||
/* Maximum possible Check ID */
|
||||
#define XZ_CHECK_MAX 15
|
||||
|
||||
#endif
|
@ -1,144 +0,0 @@
|
||||
/*
|
||||
* Simple XZ decoder command line tool
|
||||
*
|
||||
* Author: Lasse Collin <lasse.collin@tukaani.org>
|
||||
*
|
||||
* This file has been put into the public domain.
|
||||
* You can do whatever you want with this file.
|
||||
*/
|
||||
|
||||
/*
|
||||
* This is really limited: Not all filters from .xz format are supported,
|
||||
* only CRC32 is supported as the integrity check, and decoding of
|
||||
* concatenated .xz streams is not supported. Thus, you may want to look
|
||||
* at xzdec from XZ Utils if a few KiB bigger tool is not a problem.
|
||||
*/
|
||||
|
||||
#include <stdbool.h>
|
||||
#include <stdio.h>
|
||||
#include <string.h>
|
||||
#include "xz.h"
|
||||
|
||||
static uint8_t in[BUFSIZ];
|
||||
static uint8_t out[BUFSIZ];
|
||||
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
struct xz_buf b;
|
||||
struct xz_dec *s;
|
||||
enum xz_ret ret;
|
||||
const char *msg;
|
||||
|
||||
if (argc >= 2 && strcmp(argv[1], "--help") == 0)
|
||||
{
|
||||
fputs("Uncompress a .xz file from stdin to stdout.\n"
|
||||
"Arguments other than `--help' are ignored.\n",
|
||||
stdout);
|
||||
return 0;
|
||||
}
|
||||
|
||||
xz_crc32_init();
|
||||
#ifdef XZ_USE_CRC64
|
||||
xz_crc64_init();
|
||||
#endif
|
||||
|
||||
/*
|
||||
* Support up to 64 MiB dictionary. The actually needed memory
|
||||
* is allocated once the headers have been parsed.
|
||||
*/
|
||||
s = xz_dec_init(XZ_DYNALLOC, 1 << 26);
|
||||
if (s == NULL)
|
||||
{
|
||||
msg = "Memory allocation failed\n";
|
||||
goto error;
|
||||
}
|
||||
|
||||
b.in = in;
|
||||
b.in_pos = 0;
|
||||
b.in_size = 0;
|
||||
b.out = out;
|
||||
b.out_pos = 0;
|
||||
b.out_size = BUFSIZ;
|
||||
|
||||
while (true)
|
||||
{
|
||||
if (b.in_pos == b.in_size)
|
||||
{
|
||||
b.in_size = fread(in, 1, sizeof(in), stdin);
|
||||
b.in_pos = 0;
|
||||
}
|
||||
|
||||
ret = xz_dec_run(s, &b);
|
||||
|
||||
if (b.out_pos == sizeof(out))
|
||||
{
|
||||
if (fwrite(out, 1, b.out_pos, stdout) != b.out_pos)
|
||||
{
|
||||
msg = "Write error\n";
|
||||
goto error;
|
||||
}
|
||||
|
||||
b.out_pos = 0;
|
||||
}
|
||||
|
||||
if (ret == XZ_OK)
|
||||
continue;
|
||||
|
||||
#ifdef XZ_DEC_ANY_CHECK
|
||||
if (ret == XZ_UNSUPPORTED_CHECK)
|
||||
{
|
||||
fputs(argv[0], stderr);
|
||||
fputs(": ", stderr);
|
||||
fputs("Unsupported check; not verifying "
|
||||
"file integrity\n",
|
||||
stderr);
|
||||
continue;
|
||||
}
|
||||
#endif
|
||||
|
||||
if (fwrite(out, 1, b.out_pos, stdout) != b.out_pos || fclose(stdout))
|
||||
{
|
||||
msg = "Write error\n";
|
||||
goto error;
|
||||
}
|
||||
|
||||
switch (ret)
|
||||
{
|
||||
case XZ_STREAM_END:
|
||||
xz_dec_end(s);
|
||||
return 0;
|
||||
|
||||
case XZ_MEM_ERROR:
|
||||
msg = "Memory allocation failed\n";
|
||||
goto error;
|
||||
|
||||
case XZ_MEMLIMIT_ERROR:
|
||||
msg = "Memory usage limit reached\n";
|
||||
goto error;
|
||||
|
||||
case XZ_FORMAT_ERROR:
|
||||
msg = "Not a .xz file\n";
|
||||
goto error;
|
||||
|
||||
case XZ_OPTIONS_ERROR:
|
||||
msg = "Unsupported options in the .xz headers\n";
|
||||
goto error;
|
||||
|
||||
case XZ_DATA_ERROR:
|
||||
case XZ_BUF_ERROR:
|
||||
msg = "File is corrupt\n";
|
||||
goto error;
|
||||
|
||||
default:
|
||||
msg = "Bug!\n";
|
||||
goto error;
|
||||
}
|
||||
}
|
||||
|
||||
error:
|
||||
xz_dec_end(s);
|
||||
fputs(argv[0], stderr);
|
||||
fputs(": ", stderr);
|
||||
fputs(msg, stderr);
|
||||
return 1;
|
||||
}
|
Loading…
x
Reference in New Issue
Block a user